One-Dimensional Infinite Square Well

We consider a particle of mass m confined in a region of width 2a shown in figure (1). The potential energy of the particle is defined as below

$$
V(x)=\left\{\begin{array}{cc}
0, & |x|<a \tag{1}\\
\infty, & |x| \geq a
\end{array}\right.
$$

Figure 1. One-dimensional infinite square well potential

Such a system is called one dimensional box as the movement of the particle is restricted in x dimension.

To find the eigenfunctions and energy eigenvalues for this system, we solve the time dependent Schroedinger equation

$$
\begin{equation*}
\frac{-\hbar^{2}}{2 m} \frac{d^{2} \Psi(x)}{d x^{2}}+V(x) \Psi(x)=E \Psi(x) \tag{2}
\end{equation*}
$$

Since the potential energy is infinite at $\mathrm{x}= \pm \mathrm{a}$, the probability of finding the particle outside the well is zero. Therefore, the wavefunction $\Psi(\mathrm{x})$ must vanish for $|\mathrm{x}|>\mathrm{a}$. Also the wavefunction must be continuous, it must vanish at the walls so

$$
\begin{equation*}
\Psi(\mathrm{x})=0 \text { at } \mathrm{x}= \pm \mathrm{a} \tag{3}
\end{equation*}
$$

For $|\mathrm{x}|<\mathrm{a}$, Eq. (2) reduces to

$$
\frac{-\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d x^{2}}=E \Psi
$$

Or $\quad \frac{-\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d x^{2}}+k^{2} \Psi=0 \quad$, where $\quad k^{2}=\frac{2 m E}{\hbar^{2}}$

The general solution of this equation is

$$
\begin{equation*}
\Psi(x)=A \sin k x+B \cos k x \tag{5}
\end{equation*}
$$

Where A and B are constants to be determined.
Applying the boundary condition (3) at $\mathrm{x}=\mathrm{a}$, we get

$$
A \sin k a+B \cos k a=0
$$

And at $x=-a$,

$$
-A \sin k a+B \cos k a=0
$$

These equations give

$$
\begin{equation*}
A \sin k a=0, \quad B \cos k a=0 \tag{6}
\end{equation*}
$$

Observing eq.6, we can say that both A and B can not be equal to zero because this will give $\Psi(x)=0$ for all x, which is not possible. Also sin ka and cos ka can not be made zero simultaneously for a given value of k . hence we give two classes of solutions

For the first class, $\mathrm{A}=0$ and $\cos \mathrm{ka}=0$
And for second class, $\mathrm{B}=0$ and $\sin \mathrm{ka}=0$
These conditions are satisfied if $\mathrm{ka}=\mathrm{n} \pi / 2$,
where n is odd integer for the first class and even integer for the second class. Hence the eigenfunctions for both the classes can be written as

$$
\begin{aligned}
& \Psi_{n}(x)=B \cos \frac{n \pi x}{2 a} \quad, \text { where } \mathrm{n}=1,3,5, \ldots \ldots \ldots \\
& \Psi_{n}(x)=A \sin \frac{n \pi x}{2 a} \quad, \text { where } \mathrm{n}=2,4,6, \ldots \ldots .
\end{aligned}
$$

Applying normalization condition ,

$$
\begin{aligned}
& \int_{-a}^{a} \Psi_{n}^{*}(x) \Psi_{n}(x) d x=1, \text { we get } \\
& A^{2} \int_{-a}^{a} \sin ^{2}\left(\frac{n \pi x}{2 a}\right) d x=1 \quad \text { and } \quad B^{2} \int_{-a}^{a} \cos ^{2}\left(\frac{n \pi x}{2 a}\right) d x=1
\end{aligned}
$$

Solving these equations, we find $A=B=\frac{1}{\sqrt{a}}$

Accordingly, the normalized eigenfunctions for the two classes can be written as

$\Psi_{n}(x)=\frac{1}{\sqrt{a}} \cos \frac{n \pi x}{2 a}$, where $\mathrm{n}=1,3,5, \ldots \ldots \ldots$
$\Psi_{n}(x)=\frac{1}{\sqrt{a}} \sin \frac{n \pi x}{2 a}$, where $\mathrm{n}=2,4,6, \ldots \ldots \ldots$

Eq (7) gives the allowed values of k i.e.

$$
\begin{equation*}
k_{n}=\frac{n \pi}{2 a} \quad \text { where } \mathrm{n}=1,2,3, \ldots \ldots \tag{10}
\end{equation*}
$$

Using eq (4) and (10), we can obtain the energy eigenvalues as follows

$$
\begin{equation*}
E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 m}=\frac{n^{2} \pi^{2} \hbar^{2}}{8 m a^{2}} \quad \text { where } \mathrm{n}=1,2,3, \ldots \ldots \tag{11}
\end{equation*}
$$

This equation shows that the energy is quantized. The integer n is called quantum number. The representations of energy levels, eigenfunctions and probability densities are shown in figures (2), (3) and (4) respectively.

Figure (3). Wave functions

Figure (4). Probability densities

