Linear Algebra (GE-2)

Vikendra Singh

Lecture 1

Vector Space: Let V be an arbitrary nonempty set of objects, together with two operations namely addition (denoted as \oplus) and scalar multiplication(denoted as \odot), is said to be a (real) vector space if for every $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and for every $a, b \in \mathbb{R}$ the following properties hold:

Vector Space: Let V be an arbitrary nonempty set of objects, together with two operations namely addition (denoted as \oplus) and scalar multiplication(denoted as \odot), is said to be a (real) vector space if for every $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and for every $a, b \in \mathbb{R}$ the following properties hold:
(1) $\mathbf{u} \oplus \mathbf{v} \in V \quad$ (Closed under vector addition)

Vector Space: Let V be an arbitrary nonempty set of objects, together with two operations namely addition (denoted as \oplus) and scalar multiplication(denoted as \odot), is said to be a (real) vector space if for every $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and for every $a, b \in \mathbb{R}$ the following properties hold:
(1) $\mathbf{u} \oplus \mathbf{v} \in V \quad$ (Closed under vector addition)
(2) $\mathbf{u} \oplus \mathbf{v}=\mathbf{v} \oplus \mathbf{u} \quad$ (Commutativity)

Vector Space: Let V be an arbitrary nonempty set of objects, together with two operations namely addition (denoted as \oplus) and scalar multiplication(denoted as \odot), is said to be a (real) vector space if for every $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and for every $a, b \in \mathbb{R}$ the following properties hold:
(1) $\mathbf{u} \oplus \mathbf{v} \in V \quad$ (Closed under vector addition)
(2) $\mathbf{u} \oplus \mathbf{v}=\mathbf{v} \oplus \mathbf{u} \quad$ (Commutativity)
(3) $(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}=\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w}) \quad$ (Associativity)

Vector Space: Let V be an arbitrary nonempty set of objects, together with two operations namely addition (denoted as \oplus) and scalar multiplication(denoted as \odot), is said to be a (real) vector space if for every $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in V and for every $a, b \in \mathbb{R}$ the following properties hold:
(1) $\mathbf{u} \oplus \mathbf{v} \in V \quad$ (Closed under vector addition)
(2) $\mathbf{u} \oplus \mathbf{v}=\mathbf{v} \oplus \mathbf{u} \quad$ (Commutativity)
(3) $(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}=\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w}) \quad$ (Associativity)
(4) There exists an element $0 \in V$, called a zero vector, such that $\mathbf{u} \oplus 0=\mathbf{u}$ (Existence of additive identity)
(5) For each $\mathbf{u} \in V$, there is an element $-\mathbf{u} \in V$ such that $\mathbf{u} \oplus(-\mathbf{u})=0$ (Existence of additive inverse)
(5) For each $\mathbf{u} \in V$, there is an element $-\mathbf{u} \in V$ such that $\mathbf{u} \oplus(-\mathbf{u})=0$ (Existence of additive inverse)
(6) $a \odot \mathbf{u} \in V$ (Closed under scalar multiplication)
(5) For each $\mathbf{u} \in V$, there is an element $-\mathbf{u} \in V$ such that $\mathbf{u} \oplus(-\mathbf{u})=0$ (Existence of additive inverse)
(6) $a \odot \mathbf{u} \in V$ (Closed under scalar multiplication)
(1) $a \odot(\mathbf{u} \oplus \mathbf{v})=(a \odot \mathbf{u}) \oplus(a \odot \mathbf{v}) \quad$ (Distributivity)
(5) For each $\mathbf{u} \in V$, there is an element $-\mathbf{u} \in V$ such that $\mathbf{u} \oplus(-\mathbf{u})=0$ (Existence of additive inverse)
(6) $a \odot \mathbf{u} \in V$ (Closed under scalar multiplication)
(1) $a \odot(\mathbf{u} \oplus \mathbf{v})=(a \odot \mathbf{u}) \oplus(a \odot \mathbf{v}) \quad$ (Distributivity)
(8) $(a+b) \odot \mathbf{u}=a \odot \mathbf{u} \oplus b \odot \mathbf{u} \quad$ (Distributivity)
(5) For each $\mathbf{u} \in V$, there is an element $-\mathbf{u} \in V$ such that $\mathbf{u} \oplus(-\mathbf{u})=0$ (Existence of additive inverse)
(6) $a \odot \mathbf{u} \in V$ (Closed under scalar multiplication)
(1) $a \odot(\mathbf{u} \oplus \mathbf{v})=(a \odot \mathbf{u}) \oplus(a \odot \mathbf{v}) \quad$ (Distributivity)
(8) $(a+b) \odot \mathbf{u}=a \odot \mathbf{u} \oplus b \odot \mathbf{u} \quad$ (Distributivity)
(2) $(a b) \odot \mathbf{u}=a \odot(b \odot \mathbf{u})$
(5) For each $\mathbf{u} \in V$, there is an element $-\mathbf{u} \in V$ such that $\mathbf{u} \oplus(-\mathbf{u})=0$ (Existence of additive inverse)
(6) $a \odot \mathbf{u} \in V$ (Closed under scalar multiplication)
(1) $a \odot(\mathbf{u} \oplus \mathbf{v})=(a \odot \mathbf{u}) \oplus(a \odot \mathbf{v}) \quad$ (Distributivity)
(8) $(a+b) \odot \mathbf{u}=a \odot \mathbf{u} \oplus b \odot \mathbf{u} \quad$ (Distributivity)
(9) $(a b) \odot \mathbf{u}=a \odot(b \odot \mathbf{u})$
(0) $1 \odot \mathbf{u}=\mathbf{u}$.
(5) For each $\mathbf{u} \in V$, there is an element $-\mathbf{u} \in V$ such that $\mathbf{u} \oplus(-\mathbf{u})=0$ (Existence of additive inverse)
(6) $a \odot \mathbf{u} \in V$ (Closed under scalar multiplication)
(7) $a \odot(\mathbf{u} \oplus \mathbf{v})=(a \odot \mathbf{u}) \oplus(a \odot \mathbf{v}) \quad$ (Distributivity)
(8) $(a+b) \odot \mathbf{u}=a \odot \mathbf{u} \oplus b \odot \mathbf{u} \quad$ (Distributivity)
(0) $(a b) \odot \mathbf{u}=a \odot(b \odot \mathbf{u})$
(0) $1 \odot \mathbf{u}=\mathbf{u}$.

The objects of a vector space V are called vectors.

Note that the set $V=\{0\}$ is a vector space with

 respect toNote that the set $V=\{0\}$ is a vector space with respect to

- vector addition $0 \oplus 0=0$
- scalar multiplication $a \odot 0=0$ for all $a \in \mathbb{R}$

Note that the set $V=\{0\}$ is a vector space with respect to

- vector addition $0 \oplus 0=0$
- scalar multiplication $a \odot 0=0$ for all $a \in \mathbb{R}$

The vector space $V=\{0\}$ is called the zero (trivial) vector space.

Example 1: The set \mathbb{R} of real numbers is a vector space with respect to the following operations:

- $\mathbf{u} \oplus \mathbf{v}=\mathbf{u}+\mathbf{v}$ (vector addition)

Example 1: The set \mathbb{R} of real numbers is a vector space with respect to the following operations:

- $\mathbf{u} \oplus \mathbf{v}=\mathbf{u}+\mathbf{v}$ (vector addition)
- $a \odot \mathbf{u}=a \mathbf{u}$ (scalar multiplication) for all $a, \mathbf{u}, \mathbf{v} \in \mathbb{R}$.

Example 1: The set \mathbb{R} of real numbers is a vector space with respect to the following operations:

- $\mathbf{u} \oplus \mathbf{v}=\mathbf{u}+\mathbf{v}$ (vector addition)
- $a \odot \mathbf{u}=a \mathbf{u}$ (scalar multiplication)
for all $a, \mathbf{u}, \mathbf{v} \in \mathbb{R}$.

Question: Does the set \mathbb{R}^{+}of positive real numbers form a vector space under the above defined vector addition \oplus and scalar multiplication \odot ?

Example 2: The set \mathbb{R}^{+}of a positive real numbers is

 a vector space with respect to the following operations:- $\mathbf{u} \oplus \mathbf{v}=\mathbf{u} \cdot \mathbf{v}$ (vector addition)

Example 2: The set \mathbb{R}^{+}of a positive real numbers is a vector space with respect to the following operations:

- $\mathbf{u} \oplus \mathbf{v}=\mathbf{u} \cdot \mathbf{v}$ (vector addition)
- $a \odot \mathbf{u}=\mathbf{u}^{a}$ (scalar multiplication) for all $a \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{+}$.

Example 3: The set $\mathbb{R}^{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2} \in \mathbb{R}\right\}$ is a vector space with respect to the following vector addition \oplus and scalar multiplication \odot :

- $\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$

Example 3: The set $\mathbb{R}^{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2} \in \mathbb{R}\right\}$ is a vector space with respect to the following vector addition \oplus and scalar multiplication \odot :

- $\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$
- $a \odot\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right)$
for all $a \in \mathbb{R}$ and $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$.

Example 3: The set $\mathbb{R}^{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2} \in \mathbb{R}\right\}$ is a vector space with respect to the following vector addition \oplus and scalar multiplication \odot :

- $\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$
- $a \odot\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right)$
for all $a \in \mathbb{R}$ and $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$.
Question: Does \mathbb{R}^{2} form a vector space under the above defined vector addition and

Example 3: The set $\mathbb{R}^{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2} \in \mathbb{R}\right\}$ is a vector space with respect to the following vector addition \oplus and scalar multiplication \odot :

- $\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$
- $a \odot\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right)$
for all $a \in \mathbb{R}$ and $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$.
Question: Does \mathbb{R}^{2} form a vector space under the above defined vector addition and the following scalar multiplication

$$
a \odot\left(x_{1}, x_{2}\right)=\left(0, a x_{2}\right)
$$

for all $a \in \mathbb{R}$ and $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$.

Soln. of Example 3: Let $\mathbf{u}=\left(x_{1}, x_{2}\right), \mathbf{v}=\left(y_{1}, y_{2}\right)$ and $\mathbf{w}=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ and $a, b \in \mathbb{R}$.
(1) Closure Property: $\mathbf{u} \oplus \mathbf{V}$

Soln. of Example 3: Let $\mathbf{u}=\left(x_{1}, x_{2}\right), \mathbf{v}=\left(y_{1}, y_{2}\right)$

 and $\mathbf{w}=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ and $a, b \in \mathbb{R}$.(1) Closure Property:

$$
\mathbf{u} \oplus \mathbf{v}=\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)
$$

Soln. of Example 3: Let $\mathbf{u}=\left(x_{1}, x_{2}\right), \mathbf{v}=\left(y_{1}, y_{2}\right)$

 and $\mathbf{w}=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ and $a, b \in \mathbb{R}$.(1) Closure Property:

$$
\mathbf{u} \oplus \mathbf{v}=\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)
$$

Soln. of Example 3: Let $\mathbf{u}=\left(x_{1}, x_{2}\right), \mathbf{v}=\left(y_{1}, y_{2}\right)$

 and $\mathbf{w}=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ and $a, b \in \mathbb{R}$.(1) Closure Property:

$$
\mathbf{u} \oplus \mathbf{v}=\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \in \mathbb{R}^{2} .
$$

Soln. of Example 3: Let $\mathbf{u}=\left(x_{1}, x_{2}\right), \mathbf{v}=\left(y_{1}, y_{2}\right)$ and $\mathbf{w}=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ and $a, b \in \mathbb{R}$.
(1) Closure Property:

$$
\mathbf{u} \oplus \mathbf{v}=\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \in \mathbb{R}^{2} .
$$

(2) Commutative Property: $\mathbf{u} \oplus \mathbf{v}$

Soln. of Example 3: Let $\mathbf{u}=\left(x_{1}, x_{2}\right), \mathbf{v}=\left(y_{1}, y_{2}\right)$ and $\mathbf{w}=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ and $a, b \in \mathbb{R}$.
(1) Closure Property:

$$
\mathbf{u} \oplus \mathbf{v}=\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \in \mathbb{R}^{2} .
$$

(2) Commutative Property:
$\mathbf{u} \oplus \mathbf{v}=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$

Soln. of Example 3: Let $\mathbf{u}=\left(x_{1}, x_{2}\right), \mathbf{v}=\left(y_{1}, y_{2}\right)$ and $\mathbf{w}=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ and $a, b \in \mathbb{R}$.
(1) Closure Property:

$$
\mathbf{u} \oplus \mathbf{v}=\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \in \mathbb{R}^{2} .
$$

(2) Commutative Property:

$$
\mathbf{u} \oplus \mathbf{v}=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=\left(y_{1}+x_{1}, y_{2}+x_{2}\right)
$$

Soln. of Example 3: Let $\mathbf{u}=\left(x_{1}, x_{2}\right), \mathbf{v}=\left(y_{1}, y_{2}\right)$ and $\mathbf{w}=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ and $a, b \in \mathbb{R}$.
(1) Closure Property:

$$
\mathbf{u} \oplus \mathbf{v}=\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \in \mathbb{R}^{2} .
$$

(2) Commutative Property:

$$
\begin{aligned}
& \mathbf{u} \oplus \mathbf{v}=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=\left(y_{1}+x_{1}, y_{2}+x_{2}\right) \\
& \text { (commutativity of } \mathbb{R} \text { under addition) }
\end{aligned}
$$

Soln. of Example 3: Let $\mathbf{u}=\left(x_{1}, x_{2}\right), \mathbf{v}=\left(y_{1}, y_{2}\right)$ and $\mathbf{w}=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ and $a, b \in \mathbb{R}$.
(1) Closure Property:

$$
\mathbf{u} \oplus \mathbf{v}=\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \in \mathbb{R}^{2} .
$$

(2) Commutative Property:

$$
\begin{array}{r}
\mathbf{u} \oplus \mathbf{v}=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=\left(y_{1}+x_{1}, y_{2}+x_{2}\right) \\
\text { (commutativity of } \mathbb{R} \text { under addition) } \\
=\left(y_{1}, y_{2}\right) \oplus\left(x_{1}, x_{2}\right)
\end{array}
$$

Soln. of Example 3: Let $\mathbf{u}=\left(x_{1}, x_{2}\right), \mathbf{v}=\left(y_{1}, y_{2}\right)$ and $\mathbf{w}=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ and $a, b \in \mathbb{R}$.
(1) Closure Property:

$$
\mathbf{u} \oplus \mathbf{v}=\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \in \mathbb{R}^{2} .
$$

(2) Commutative Property:

$$
\begin{aligned}
& \mathbf{u} \oplus \mathbf{v}=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=\left(y_{1}+x_{1}, y_{2}+x_{2}\right) \\
& \text { (commutativity of } \mathbb{R} \text { under addition) } \\
& =\left(y_{1}, y_{2}\right) \oplus\left(x_{1}, x_{2}\right) \\
& \\
& =\mathbf{v} \oplus \mathbf{u}
\end{aligned}
$$

Soln. of Example 3: Let $\mathbf{u}=\left(x_{1}, x_{2}\right), \mathbf{v}=\left(y_{1}, y_{2}\right)$ and $\mathbf{w}=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ and $a, b \in \mathbb{R}$.
(1) Closure Property:

$$
\mathbf{u} \oplus \mathbf{v}=\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \in \mathbb{R}^{2} .
$$

(2) Commutative Property:

$$
\mathbf{u} \oplus \mathbf{v}=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=\left(y_{1}+x_{1}, y_{2}+x_{2}\right)
$$

(commutativity of \mathbb{R} under addition)

$$
\begin{aligned}
& =\left(y_{1}, y_{2}\right) \oplus\left(x_{1}, x_{2}\right) \\
& =\mathbf{v} \oplus \mathbf{u}
\end{aligned}
$$

(3) Associative Property:
$(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}$

Soln. of Example 3: Let $\mathbf{u}=\left(x_{1}, x_{2}\right), \mathbf{v}=\left(y_{1}, y_{2}\right)$ and $\mathbf{w}=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ and $a, b \in \mathbb{R}$.
(1) Closure Property:

$$
\mathbf{u} \oplus \mathbf{v}=\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \in \mathbb{R}^{2} .
$$

(2) Commutative Property:
$\mathbf{u} \oplus \mathbf{v}=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=\left(y_{1}+x_{1}, y_{2}+x_{2}\right)$
(commutativity of \mathbb{R} under addition)

$$
\begin{aligned}
& =\left(y_{1}, y_{2}\right) \oplus\left(x_{1}, x_{2}\right) \\
& =\mathbf{v} \oplus \mathbf{u}
\end{aligned}
$$

(3) Associative Property:
$(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}=\left(\left(x_{1}+y_{1}\right)+z_{1},\left(x_{2}+y_{2}\right)+z_{2}\right)$

Soln. of Example 3: Let $\mathbf{u}=\left(x_{1}, x_{2}\right), \mathbf{v}=\left(y_{1}, y_{2}\right)$ and $\mathbf{w}=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ and $a, b \in \mathbb{R}$.
(1) Closure Property:

$$
\mathbf{u} \oplus \mathbf{v}=\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \in \mathbb{R}^{2} .
$$

(2) Commutative Property:
$\mathbf{u} \oplus \mathbf{v}=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=\left(y_{1}+x_{1}, y_{2}+x_{2}\right)$
(commutativity of \mathbb{R} under addition)

$$
\begin{aligned}
& =\left(y_{1}, y_{2}\right) \oplus\left(x_{1}, x_{2}\right) \\
& =\mathbf{v} \oplus \mathbf{u}
\end{aligned}
$$

(3) Associative Property:
$\begin{aligned}(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w} & =\left(\left(x_{1}+y_{1}\right)+z_{1},\left(x_{2}+y_{2}\right)+z_{2}\right) \\ & =\left(x_{1}+\left(y_{1}+z_{1}\right), x_{2}+\left(y_{2}+z_{2}\right)\right)\end{aligned}$

Soln. of Example 3: Let $\mathbf{u}=\left(x_{1}, x_{2}\right), \mathbf{v}=\left(y_{1}, y_{2}\right)$ and $\mathbf{w}=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ and $a, b \in \mathbb{R}$.
(1) Closure Property:

$$
\mathbf{u} \oplus \mathbf{v}=\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \in \mathbb{R}^{2} .
$$

(2) Commutative Property:
$\mathbf{u} \oplus \mathbf{v}=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)=\left(y_{1}+x_{1}, y_{2}+x_{2}\right)$
(commutativity of \mathbb{R} under addition)

$$
\begin{aligned}
& =\left(y_{1}, y_{2}\right) \oplus\left(x_{1}, x_{2}\right) \\
& =\mathbf{v} \oplus \mathbf{u}
\end{aligned}
$$

(3) Associative Property:
$\begin{aligned}(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w} & =\left(\left(x_{1}+y_{1}\right)+z_{1},\left(x_{2}+y_{2}\right)+z_{2}\right) \\ & =\left(x_{1}+\left(y_{1}+z_{1}\right), x_{2}+\left(y_{2}+z_{2}\right)\right) \\ & \text { (associativity of } \mathbb{R} \text { under addition) }\end{aligned}$

$=\left(x_{1}, x_{2}\right) \oplus\left(y_{1}+z_{1}, y_{2}+z_{2}\right)$

$$
\begin{aligned}
& =\left(x_{1}, x_{2}\right) \oplus\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
& =\left(x_{1}, x_{2}\right) \oplus\left(\left(y_{1}, y_{2}\right) \oplus\left(z_{1}, z_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(x_{1}, x_{2}\right) \oplus\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
& =\left(x_{1}, x_{2}\right) \oplus\left(\left(y_{1}, y_{2}\right) \oplus\left(z_{1}, z_{2}\right)\right) \\
& =\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})
\end{aligned}
$$

$$
\begin{aligned}
& =\left(x_{1}, x_{2}\right) \oplus\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
& =\left(x_{1}, x_{2}\right) \oplus\left(\left(y_{1}, y_{2}\right) \oplus\left(z_{1}, z_{2}\right)\right) \\
& =\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})
\end{aligned}
$$

(4) Existence of additive identity (zero vector):

$$
\begin{aligned}
& =\left(x_{1}, x_{2}\right) \oplus\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
& =\left(x_{1}, x_{2}\right) \oplus\left(\left(y_{1}, y_{2}\right) \oplus\left(z_{1}, z_{2}\right)\right) \\
& =\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})
\end{aligned}
$$

(4) Existence of additive identity (zero vector): For any $\mathbf{u}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ there exists $0=(0,0) \in \mathbb{R}^{2}$ such that

$$
\begin{aligned}
& =\left(x_{1}, x_{2}\right) \oplus\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
& =\left(x_{1}, x_{2}\right) \oplus\left(\left(y_{1}, y_{2}\right) \oplus\left(z_{1}, z_{2}\right)\right) \\
& =\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})
\end{aligned}
$$

(4) Existence of additive identity (zero vector): For any $\mathbf{u}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ there exists $0=(0,0) \in \mathbb{R}^{2}$ such that
$\mathbf{u} \oplus 0=$

$$
\begin{aligned}
& =\left(x_{1}, x_{2}\right) \oplus\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
& =\left(x_{1}, x_{2}\right) \oplus\left(\left(y_{1}, y_{2}\right) \oplus\left(z_{1}, z_{2}\right)\right) \\
& =\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})
\end{aligned}
$$

(4) Existence of additive identity (zero vector): For any $\mathbf{u}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ there exists $0=(0,0) \in \mathbb{R}^{2}$ such that
$\mathbf{u} \oplus 0=\left(x_{1}, x_{2}\right) \oplus(0,0)$

$$
\begin{aligned}
& =\left(x_{1}, x_{2}\right) \oplus\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
& =\left(x_{1}, x_{2}\right) \oplus\left(\left(y_{1}, y_{2}\right) \oplus\left(z_{1}, z_{2}\right)\right) \\
& =\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})
\end{aligned}
$$

(4) Existence of additive identity (zero vector): For any $\mathbf{u}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ there exists $0=(0,0) \in \mathbb{R}^{2}$ such that
$\mathbf{u} \oplus 0=\left(x_{1}, x_{2}\right) \oplus(0,0)=\left(x_{1}+0, x_{2}+0\right)$

$$
\begin{aligned}
& =\left(x_{1}, x_{2}\right) \oplus\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
& =\left(x_{1}, x_{2}\right) \oplus\left(\left(y_{1}, y_{2}\right) \oplus\left(z_{1}, z_{2}\right)\right) \\
& =\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})
\end{aligned}
$$

(4) Existence of additive identity (zero vector): For any $\mathbf{u}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ there exists $0=(0,0) \in \mathbb{R}^{2}$ such that

$$
\begin{gathered}
\mathbf{u} \oplus 0=\left(x_{1}, x_{2}\right) \oplus(0,0)=\left(x_{1}+0, x_{2}+0\right) \\
=\left(x_{1}, x_{2}\right)
\end{gathered}
$$

$$
\begin{aligned}
& =\left(x_{1}, x_{2}\right) \oplus\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
& =\left(x_{1}, x_{2}\right) \oplus\left(\left(y_{1}, y_{2}\right) \oplus\left(z_{1}, z_{2}\right)\right) \\
& =\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})
\end{aligned}
$$

(4) Existence of additive identity (zero vector): For any $\mathbf{u}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ there exists $0=(0,0) \in \mathbb{R}^{2}$ such that

$$
\begin{aligned}
\mathbf{u} \oplus 0=\left(x_{1}, x_{2}\right) \oplus(0,0) & =\left(x_{1}+0, x_{2}+0\right) \\
& =\left(x_{1}, x_{2}\right) \\
& =\mathbf{u}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(x_{1}, x_{2}\right) \oplus\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
& =\left(x_{1}, x_{2}\right) \oplus\left(\left(y_{1}, y_{2}\right) \oplus\left(z_{1}, z_{2}\right)\right) \\
& =\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})
\end{aligned}
$$

(4) Existence of additive identity (zero vector): For any $\mathbf{u}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ there exists $0=(0,0) \in \mathbb{R}^{2}$ such that

$$
\begin{aligned}
\mathbf{u} \oplus 0=\left(x_{1}, x_{2}\right) \oplus(0,0) & =\left(x_{1}+0, x_{2}+0\right) \\
& =\left(x_{1}, x_{2}\right) \\
& =\mathbf{u}
\end{aligned}
$$

(5) Existence of additive inverse:

$$
\begin{aligned}
& =\left(x_{1}, x_{2}\right) \oplus\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
& =\left(x_{1}, x_{2}\right) \oplus\left(\left(y_{1}, y_{2}\right) \oplus\left(z_{1}, z_{2}\right)\right) \\
& =\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})
\end{aligned}
$$

(4) Existence of additive identity (zero vector): For any $\mathbf{u}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ there exists $0=(0,0) \in \mathbb{R}^{2}$ such that

$$
\begin{aligned}
\mathbf{u} \oplus 0=\left(x_{1}, x_{2}\right) \oplus(0,0) & =\left(x_{1}+0, x_{2}+0\right) \\
& =\left(x_{1}, x_{2}\right) \\
& =\mathbf{u}
\end{aligned}
$$

(5) Existence of additive inverse: For each $\mathbf{u}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ there exists $-\mathbf{u}=\left(-x_{1},-x_{2}\right)$ in \mathbb{R}^{2} such that

$$
\begin{aligned}
& =\left(x_{1}, x_{2}\right) \oplus\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
& =\left(x_{1}, x_{2}\right) \oplus\left(\left(y_{1}, y_{2}\right) \oplus\left(z_{1}, z_{2}\right)\right) \\
& =\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})
\end{aligned}
$$

(4) Existence of additive identity (zero vector): For any $\mathbf{u}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ there exists $0=(0,0) \in \mathbb{R}^{2}$ such that

$$
\begin{aligned}
\mathbf{u} \oplus 0=\left(x_{1}, x_{2}\right) \oplus(0,0) & =\left(x_{1}+0, x_{2}+0\right) \\
& =\left(x_{1}, x_{2}\right) \\
& =\mathbf{u}
\end{aligned}
$$

(5) Existence of additive inverse: For each $\mathbf{u}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ there exists $-\mathbf{u}=\left(-x_{1},-x_{2}\right)$ in \mathbb{R}^{2} such that
$\mathbf{u} \oplus(-\mathbf{u})=\left(x_{1}, x_{2}\right) \oplus\left(-x_{1},-x_{2}\right)$

$$
\begin{aligned}
& =\left(x_{1}, x_{2}\right) \oplus\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
& =\left(x_{1}, x_{2}\right) \oplus\left(\left(y_{1}, y_{2}\right) \oplus\left(z_{1}, z_{2}\right)\right) \\
& =\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})
\end{aligned}
$$

(4) Existence of additive identity (zero vector): For any $\mathbf{u}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ there exists $0=(0,0) \in \mathbb{R}^{2}$ such that

$$
\begin{aligned}
\mathbf{u} \oplus 0=\left(x_{1}, x_{2}\right) \oplus(0,0) & =\left(x_{1}+0, x_{2}+0\right) \\
& =\left(x_{1}, x_{2}\right) \\
& =\mathbf{u}
\end{aligned}
$$

(5) Existence of additive inverse: For each $\mathbf{u}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ there exists $-\mathbf{u}=\left(-x_{1},-x_{2}\right)$ in \mathbb{R}^{2} such that

$$
\begin{aligned}
\mathbf{u} \oplus(-\mathbf{u}) & =\left(x_{1}, x_{2}\right) \oplus\left(-x_{1},-x_{2}\right) \\
& =\left(x_{1}+\left(-x_{1}\right), x_{2}+\left(-x_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(x_{1}, x_{2}\right) \oplus\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
& =\left(x_{1}, x_{2}\right) \oplus\left(\left(y_{1}, y_{2}\right) \oplus\left(z_{1}, z_{2}\right)\right) \\
& =\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})
\end{aligned}
$$

(4) Existence of additive identity (zero vector): For any $\mathbf{u}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ there exists $0=(0,0) \in \mathbb{R}^{2}$ such that

$$
\begin{aligned}
\mathbf{u} \oplus 0=\left(x_{1}, x_{2}\right) \oplus(0,0) & =\left(x_{1}+0, x_{2}+0\right) \\
& =\left(x_{1}, x_{2}\right) \\
& =\mathbf{u}
\end{aligned}
$$

(5) Existence of additive inverse: For each $\mathbf{u}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ there exists $-\mathbf{u}=\left(-x_{1},-x_{2}\right)$ in \mathbb{R}^{2} such that

$$
\begin{aligned}
\mathbf{u} \oplus(-\mathbf{u}) & =\left(x_{1}, x_{2}\right) \oplus\left(-x_{1},-x_{2}\right) \\
& =\left(x_{1}+\left(-x_{1}\right), x_{2}+\left(-x_{2}\right)\right)=(0,0)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(x_{1}, x_{2}\right) \oplus\left(y_{1}+z_{1}, y_{2}+z_{2}\right) \\
& =\left(x_{1}, x_{2}\right) \oplus\left(\left(y_{1}, y_{2}\right) \oplus\left(z_{1}, z_{2}\right)\right) \\
& =\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})
\end{aligned}
$$

(4) Existence of additive identity (zero vector): For any $\mathbf{u}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ there exists $0=(0,0) \in \mathbb{R}^{2}$ such that

$$
\begin{aligned}
\mathbf{u} \oplus 0=\left(x_{1}, x_{2}\right) \oplus(0,0) & =\left(x_{1}+0, x_{2}+0\right) \\
& =\left(x_{1}, x_{2}\right) \\
& =\mathbf{u}
\end{aligned}
$$

(5) Existence of additive inverse: For each $\mathbf{u}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ there exists $-\mathbf{u}=\left(-x_{1},-x_{2}\right)$ in \mathbb{R}^{2} such that

$$
\begin{aligned}
\mathbf{u} \oplus(-\mathbf{u}) & =\left(x_{1}, x_{2}\right) \oplus\left(-x_{1},-x_{2}\right) \\
& =\left(x_{1}+\left(-x_{1}\right), x_{2}+\left(-x_{2}\right)\right)=(0,0)=0
\end{aligned}
$$

(Closure Property of scalar multiplication:
(3) Closure Property of scalar multiplication: $a \odot \mathbf{u}$
(3) Closure Property of scalar multiplication:

$$
a \odot \mathbf{u}=a \odot\left(x_{1}, x_{2}\right)
$$

(3) Closure Property of scalar multiplication:

$$
a \odot \mathbf{u}=a \odot\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right)
$$

(3) Closure Property of scalar multiplication: $a \odot \mathbf{u}=a \odot\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right) \in \mathbb{R}^{2}$.
(3) Closure Property of scalar multiplication: $a \odot \mathbf{u}=a \odot\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right) \in \mathbb{R}^{2}$. Thus, \mathbb{R}^{2} is closed under scalar multiplication.
(3) Closure Property of scalar multiplication: $a \odot \mathbf{u}=a \odot\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right) \in \mathbb{R}^{2}$. Thus, \mathbb{R}^{2} is closed under scalar multiplication.
(0) Distributivity over vector addition:
(3) Closure Property of scalar multiplication: $a \odot \mathbf{u}=a \odot\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right) \in \mathbb{R}^{2}$. Thus, \mathbb{R}^{2} is closed under scalar multiplication.
(3) Distributivity over vector addition:
$a \odot(\mathbf{u} \oplus \mathbf{v})$
(3) Closure Property of scalar multiplication: $a \odot \mathbf{u}=a \odot\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right) \in \mathbb{R}^{2}$. Thus, \mathbb{R}^{2} is closed under scalar multiplication.
(3) Distributivity over vector addition:
$a \odot(\mathbf{u} \oplus \mathbf{v})=a \odot\left(\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)\right)$
(3) Closure Property of scalar multiplication: $a \odot \mathbf{u}=a \odot\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right) \in \mathbb{R}^{2}$. Thus, \mathbb{R}^{2} is closed under scalar multiplication.
(3) Distributivity over vector addition:

$$
\begin{aligned}
a \odot(\mathbf{u} \oplus \mathbf{v}) & =a \odot\left(\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)\right) \\
& =a \odot\left(x_{1}+y_{1}, x_{2}+y_{2}\right)
\end{aligned}
$$

(3) Closure Property of scalar multiplication: $a \odot \mathbf{u}=a \odot\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right) \in \mathbb{R}^{2}$. Thus, \mathbb{R}^{2} is closed under scalar multiplication.
(3) Distributivity over vector addition:

$$
\begin{aligned}
a \odot(\mathbf{u} \oplus \mathbf{v}) & =a \odot\left(\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)\right) \\
& =a \odot\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \\
& =\left(a\left(x_{1}+y_{1}\right), a\left(x_{2}+y_{2}\right)\right)
\end{aligned}
$$

(3) Closure Property of scalar multiplication: $a \odot \mathbf{u}=a \odot\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right) \in \mathbb{R}^{2}$. Thus, \mathbb{R}^{2} is closed under scalar multiplication.
(3) Distributivity over vector addition:

$$
\begin{aligned}
a \odot(\mathbf{u} \oplus \mathbf{v}) & =a \odot\left(\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)\right) \\
& =a \odot\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \\
& =\left(a\left(x_{1}+y_{1}\right), a\left(x_{2}+y_{2}\right)\right) \\
= & \left.\left(a x_{1}+a y_{1}, a x_{2}+a y_{2}\right) \text { (distributivity in } \mathbb{R}\right)
\end{aligned}
$$

(3) Closure Property of scalar multiplication:
$a \odot \mathbf{u}=a \odot\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right) \in \mathbb{R}^{2}$. Thus, \mathbb{R}^{2} is closed under scalar multiplication.
(3) Distributivity over vector addition:

$$
\begin{aligned}
a \odot(\mathbf{u} \oplus \mathbf{v}) & =a \odot\left(\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)\right) \\
& =a \odot\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \\
& =\left(a\left(x_{1}+y_{1}\right), a\left(x_{2}+y_{2}\right)\right) \\
= & \left.\left(a x_{1}+a y_{1}, a x_{2}+a y_{2}\right) \text { (distributivity in } \mathbb{R}\right) \\
& =\left(a x_{1}, a x_{2}\right) \oplus\left(a y_{1}, a y_{2}\right)
\end{aligned}
$$

(3) Closure Property of scalar multiplication:
$a \odot \mathbf{u}=a \odot\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right) \in \mathbb{R}^{2}$. Thus, \mathbb{R}^{2} is closed under scalar multiplication.
(Distributivity over vector addition:

$$
\begin{aligned}
a \odot(\mathbf{u} \oplus \mathbf{v}) & =a \odot\left(\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)\right) \\
& =a \odot\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \\
& =\left(a\left(x_{1}+y_{1}\right), a\left(x_{2}+y_{2}\right)\right) \\
= & \left.\left(a x_{1}+a y_{1}, a x_{2}+a y_{2}\right) \text { (distributivity in } \mathbb{R}\right) \\
& =\left(a x_{1}, a x_{2}\right) \oplus\left(a y_{1}, a y_{2}\right) \\
& =\left(a \odot\left(x_{1}, x_{2}\right)\right) \oplus\left(a \odot\left(y_{1}, y_{2}\right)\right)
\end{aligned}
$$

(3) Closure Property of scalar multiplication:
$a \odot \mathbf{u}=a \odot\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right) \in \mathbb{R}^{2}$. Thus, \mathbb{R}^{2} is closed under scalar multiplication.
(Distributivity over vector addition:

$$
\begin{aligned}
a \odot(\mathbf{u} \oplus \mathbf{v}) & =a \odot\left(\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)\right) \\
& =a \odot\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \\
& =\left(a\left(x_{1}+y_{1}\right), a\left(x_{2}+y_{2}\right)\right) \\
= & \left.\left(a x_{1}+a y_{1}, a x_{2}+a y_{2}\right) \text { (distributivity in } \mathbb{R}\right) \\
& =\left(a x_{1}, a x_{2}\right) \oplus\left(a y_{1}, a y_{2}\right) \\
& =\left(a \odot\left(x_{1}, x_{2}\right)\right) \oplus\left(a \odot\left(y_{1}, y_{2}\right)\right) \\
& =(a \odot \mathbf{u}) \oplus(a \odot \mathbf{v})
\end{aligned}
$$

(3) Distributivity over scalar addition:

(3) Distributivity over scalar addition:

$$
(a+b) \odot \mathbf{u}=(a+b) \odot\left(x_{1}, x_{2}\right)
$$

(3) Distributivity over scalar addition:

$$
\begin{aligned}
(a+b) \odot \mathbf{u} & =(a+b) \odot\left(x_{1}, x_{2}\right) \\
& =\left((a+b) x_{1},(a+b) x_{2}\right)
\end{aligned}
$$

(3) Distributivity over scalar addition:

$$
\begin{aligned}
(a+b) \odot \mathbf{u} & =(a+b) \odot\left(x_{1}, x_{2}\right) \\
& =\left((a+b) x_{1},(a+b) x_{2}\right) \\
= & \left.\left(a x_{1}+b x_{1}, a x_{2}+b x_{2}\right) \text { (distributivity in } \mathbb{R}\right)
\end{aligned}
$$

(0) Distributivity over scalar addition:

$$
\begin{aligned}
(a+b) \odot \mathbf{u} & =(a+b) \odot\left(x_{1}, x_{2}\right) \\
& =\left((a+b) x_{1},(a+b) x_{2}\right) \\
= & \left.\left(a x_{1}+b x_{1}, a x_{2}+b x_{2}\right) \text { (distributivity in } \mathbb{R}\right) \\
& =\left(a x_{1}, a x_{2}\right) \oplus\left(b x_{1}, b x_{2}\right)
\end{aligned}
$$

(0) Distributivity over scalar addition:

$$
\begin{aligned}
(a+b) \odot \mathbf{u} & =(a+b) \odot\left(x_{1}, x_{2}\right) \\
& =\left((a+b) x_{1},(a+b) x_{2}\right) \\
= & \left.\left(a x_{1}+b x_{1}, a x_{2}+b x_{2}\right) \text { (distributivity in } \mathbb{R}\right) \\
& =\left(a x_{1}, a x_{2}\right) \oplus\left(b x_{1}, b x_{2}\right) \\
& =\left(a \odot\left(x_{1}, x_{2}\right)\right) \oplus\left(b \odot\left(x_{1}, x_{2}\right)\right)
\end{aligned}
$$

(0) Distributivity over scalar addition:

$$
\begin{aligned}
(a+b) \odot \mathbf{u} & =(a+b) \odot\left(x_{1}, x_{2}\right) \\
& =\left((a+b) x_{1},(a+b) x_{2}\right) \\
= & \left.\left(a x_{1}+b x_{1}, a x_{2}+b x_{2}\right) \text { (distributivity in } \mathbb{R}\right) \\
& =\left(a x_{1}, a x_{2}\right) \oplus\left(b x_{1}, b x_{2}\right) \\
& =\left(a \odot\left(x_{1}, x_{2}\right)\right) \oplus\left(b \odot\left(x_{1}, x_{2}\right)\right) \\
& =(a \odot \mathbf{u}) \oplus(b \odot \mathbf{u})
\end{aligned}
$$

(0) Distributivity over scalar addition:

$$
\begin{aligned}
(a+b) \odot \mathbf{u} & =(a+b) \odot\left(x_{1}, x_{2}\right) \\
& =\left((a+b) x_{1},(a+b) x_{2}\right) \\
= & \left.\left(a x_{1}+b x_{1}, a x_{2}+b x_{2}\right) \text { (distributivity in } \mathbb{R}\right) \\
& =\left(a x_{1}, a x_{2}\right) \oplus\left(b x_{1}, b x_{2}\right) \\
& =\left(a \odot\left(x_{1}, x_{2}\right)\right) \oplus\left(b \odot\left(x_{1}, x_{2}\right)\right) \\
& =(a \odot \mathbf{u}) \oplus(b \odot \mathbf{u})
\end{aligned}
$$

(2) $(a b) \odot \mathbf{u}$
(3) Distributivity over scalar addition:

$$
\begin{aligned}
(a+b) \odot \mathbf{u} & =(a+b) \odot\left(x_{1}, x_{2}\right) \\
& =\left((a+b) x_{1},(a+b) x_{2}\right) \\
= & \left(a x_{1}+b x_{1}, a x_{2}+b x_{2}\right)(\text { distributivity in } \mathbb{R}) \\
& =\left(a x_{1}, a x_{2}\right) \oplus\left(b x_{1}, b x_{2}\right) \\
& =\left(a \odot\left(x_{1}, x_{2}\right)\right) \oplus\left(b \odot\left(x_{1}, x_{2}\right)\right) \\
& =(a \odot \mathbf{u}) \oplus(b \odot \mathbf{u}) \\
& =(a b) \odot\left(x_{1}, x_{2}\right)
\end{aligned}
$$

(8) Distributivity over scalar addition:

$$
\begin{aligned}
(a+b) \odot \mathbf{u} & =(a+b) \odot\left(x_{1}, x_{2}\right) \\
& =\left((a+b) x_{1},(a+b) x_{2}\right) \\
= & \left(a x_{1}+b x_{1}, a x_{2}+b x_{2}\right)(\text { distributivity in } \mathbb{R}) \\
& =\left(a x_{1}, a x_{2}\right) \oplus\left(b x_{1}, b x_{2}\right) \\
& =\left(a \odot\left(x_{1}, x_{2}\right)\right) \oplus\left(b \odot\left(x_{1}, x_{2}\right)\right) \\
& =(a \odot \mathbf{u}) \oplus(b \odot \mathbf{u}) \\
& =(a b) \odot\left(x_{1}, x_{2}\right) \\
& =\left((a b) x_{1},(a b) x_{2}\right)
\end{aligned}
$$

(8) Distributivity over scalar addition:

$$
\begin{aligned}
(a+b) \odot \mathbf{u} & =(a+b) \odot\left(x_{1}, x_{2}\right) \\
& =\left((a+b) x_{1},(a+b) x_{2}\right) \\
= & \left.\left(a x_{1}+b x_{1}, a x_{2}+b x_{2}\right) \text { (distributivity in } \mathbb{R}\right) \\
& =\left(a x_{1}, a x_{2}\right) \oplus\left(b x_{1}, b x_{2}\right) \\
& =\left(a \odot\left(x_{1}, x_{2}\right)\right) \oplus\left(b \odot\left(x_{1}, x_{2}\right)\right) \\
& =(a \odot \mathbf{u}) \oplus(b \odot \mathbf{u}) \\
& =(a b) \odot\left(x_{1}, x_{2}\right) \\
& =\left((a b) x_{1},(a b) x_{2}\right) \\
& =\left(a\left(b x_{1}\right), a\left(b x_{2}\right)\right)
\end{aligned}
$$

(8) Distributivity over scalar addition:

$$
\begin{aligned}
(a+b) \odot \mathbf{u} & =(a+b) \odot\left(x_{1}, x_{2}\right) \\
& =\left((a+b) x_{1},(a+b) x_{2}\right)
\end{aligned}
$$

$$
=\left(a x_{1}+b x_{1}, a x_{2}+b x_{2}\right)(\text { distributivity in } \mathbb{R})
$$

$$
=\left(a x_{1}, a x_{2}\right) \oplus\left(b x_{1}, b x_{2}\right)
$$

$$
=\left(a \odot\left(x_{1}, x_{2}\right)\right) \oplus\left(b \odot\left(x_{1}, x_{2}\right)\right)
$$

$$
=(a \odot \mathbf{u}) \oplus(b \odot \mathbf{u})
$$

(0) $(a b) \odot \mathbf{u}=(a b) \odot\left(x_{1}, x_{2}\right)$

$$
=\left((a b) x_{1},(a b) x_{2}\right)
$$

$$
=\left(a\left(b x_{1}\right), a\left(b x_{2}\right)\right)
$$

(associativity of \mathbb{R} under multiplication)
(8) Distributivity over scalar addition:

$$
\begin{aligned}
(a+b) \odot \mathbf{u} & =(a+b) \odot\left(x_{1}, x_{2}\right) \\
& =\left((a+b) x_{1},(a+b) x_{2}\right)
\end{aligned}
$$

$$
=\left(a x_{1}+b x_{1}, a x_{2}+b x_{2}\right)(\text { distributivity in } \mathbb{R})
$$

$$
=\left(a x_{1}, a x_{2}\right) \oplus\left(b x_{1}, b x_{2}\right)
$$

$$
=\left(a \odot\left(x_{1}, x_{2}\right)\right) \oplus\left(b \odot\left(x_{1}, x_{2}\right)\right)
$$

$$
=(a \odot \mathbf{u}) \oplus(b \odot \mathbf{u})
$$

(c) $(a b) \odot \mathbf{u}=(a b) \odot\left(x_{1}, x_{2}\right)$

$$
=\left((a b) x_{1},(a b) x_{2}\right)
$$

$$
=\left(a\left(b x_{1}\right), a\left(b x_{2}\right)\right)
$$

(associativity of \mathbb{R} under multiplication)

$$
=a \odot\left(b x_{1}, b x_{2}\right)
$$

(8) Distributivity over scalar addition:

$$
\begin{aligned}
(a+b) \odot \mathbf{u} & =(a+b) \odot\left(x_{1}, x_{2}\right) \\
& =\left((a+b) x_{1},(a+b) x_{2}\right)
\end{aligned}
$$

$$
=\left(a x_{1}+b x_{1}, a x_{2}+b x_{2}\right)(\text { distributivity in } \mathbb{R})
$$

$$
=\left(a x_{1}, a x_{2}\right) \oplus\left(b x_{1}, b x_{2}\right)
$$

$$
=\left(a \odot\left(x_{1}, x_{2}\right)\right) \oplus\left(b \odot\left(x_{1}, x_{2}\right)\right)
$$

$$
=(a \odot \mathbf{u}) \oplus(b \odot \mathbf{u})
$$

(0) $(a b) \odot \mathbf{u}=(a b) \odot\left(x_{1}, x_{2}\right)$

$$
=\left((a b) x_{1},(a b) x_{2}\right)
$$

$$
=\left(a\left(b x_{1}\right), a\left(b x_{2}\right)\right)
$$

(associativity of \mathbb{R} under multiplication)

$$
\begin{aligned}
& =a \odot\left(b x_{1}, b x_{2}\right) \\
& =a \odot\left(b \odot\left(x_{1}, x_{2}\right)\right)
\end{aligned}
$$

(8) Distributivity over scalar addition:

$$
\begin{aligned}
(a+b) \odot \mathbf{u} & =(a+b) \odot\left(x_{1}, x_{2}\right) \\
& =\left((a+b) x_{1},(a+b) x_{2}\right)
\end{aligned}
$$

$$
=\left(a x_{1}+b x_{1}, a x_{2}+b x_{2}\right)(\text { distributivity in } \mathbb{R})
$$

$$
=\left(a x_{1}, a x_{2}\right) \oplus\left(b x_{1}, b x_{2}\right)
$$

$$
=\left(a \odot\left(x_{1}, x_{2}\right)\right) \oplus\left(b \odot\left(x_{1}, x_{2}\right)\right)
$$

$$
=(a \odot \mathbf{u}) \oplus(b \odot \mathbf{u})
$$

(0) $(a b) \odot \mathbf{u}=(a b) \odot\left(x_{1}, x_{2}\right)$

$$
=\left((a b) x_{1},(a b) x_{2}\right)
$$

$$
=\left(a\left(b x_{1}\right), a\left(b x_{2}\right)\right)
$$

(associativity of \mathbb{R} under multiplication)

$$
\begin{aligned}
& =a \odot\left(b x_{1}, b x_{2}\right) \\
& =a \odot\left(b \odot\left(x_{1}, x_{2}\right)\right) \\
& =a \odot(b \odot \mathbf{u})
\end{aligned}
$$

(10) $1 \odot \mathbf{u}=$
(1) $1 \odot \mathbf{u}=1 \odot\left(x_{1}, x_{2}\right)=$
(10) $1 \odot \mathbf{u}=1 \odot\left(x_{1}, x_{2}\right)=\left(1 x_{1}, 1 x_{2}\right)=$
(10) $1 \odot \mathbf{u}=1 \odot\left(x_{1}, x_{2}\right)=\left(1 x_{1}, 1 x_{2}\right)=\left(x_{1}, x_{2}\right)=$
(0) $1 \odot \mathbf{u}=1 \odot\left(x_{1}, x_{2}\right)=\left(1 x_{1}, 1 x_{2}\right)=\left(x_{1}, x_{2}\right)=\mathbf{u}$
(0) $1 \odot \mathbf{u}=1 \odot\left(x_{1}, x_{2}\right)=\left(1 x_{1}, 1 x_{2}\right)=\left(x_{1}, x_{2}\right)=\mathbf{u}$.

Thus \mathbb{R}^{2} is vector space under usual vector addition and scalar multiplication.

Exercise: Show that the set

$$
\mathbb{R}^{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2} \in \mathbb{R}\right\}
$$

is a vector space with respect to the following vector addition \oplus and scalar multiplication \odot :

- $\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}+1, x_{2}+y_{2}-2\right)$

Exercise: Show that the set

$$
\mathbb{R}^{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2} \in \mathbb{R}\right\}
$$

is a vector space with respect to the following vector addition \oplus and scalar multiplication \odot :

- $\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}+1, x_{2}+y_{2}-2\right)$
- $a \odot\left(x_{1}, x_{2}\right)=\left(a x_{1}+a-1, a x_{2}-2 a+2\right)$

Example 4: Consider the set

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \mathbb{R}\right\}
$$

For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and $a \in \mathbb{R}$, define

Example 4: Consider the set

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \mathbb{R}\right\}
$$

For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and $a \in \mathbb{R}$, define

$$
\begin{aligned}
\mathbf{u} \oplus \mathbf{v} & =\left(x_{1}, x_{2}, \ldots, x_{n}\right) \oplus\left(y_{1}, y_{2}, \ldots, y_{n}\right) \\
& =\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right) \\
a \odot \mathbf{u} & =\left(a x_{1}, a x_{2}, \ldots, a x_{n}\right) .
\end{aligned}
$$

Then \mathbb{R}^{n} is a vector space with respect to \oplus and \odot.

Example 4: Consider the set

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \mathbb{R}\right\}
$$

For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and $a \in \mathbb{R}$, define

$$
\begin{aligned}
& \mathbf{u} \oplus \mathbf{v}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \oplus\left(y_{1}, y_{2}, \ldots, y_{n}\right) \\
& a \odot \mathbf{u}=\left(a x_{1}, a x_{2}, \ldots, a x_{n}\right) .
\end{aligned}
$$

Then \mathbb{R}^{n} is a vector space with respect to \oplus and \odot.

Example 4: Consider the set

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \mathbb{R}\right\}
$$

For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and $a \in \mathbb{R}$, define

$$
\mathbf{u} \oplus \mathbf{v}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \oplus\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

Then \mathbb{R}^{n} is a vector space with respect to \oplus and \odot.

Example 4: Consider the set

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \mathbb{R}\right\}
$$

For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and $a \in \mathbb{R}$, define

$$
\begin{aligned}
\mathbf{u} \oplus \mathbf{v} & =\left(x_{1}, x_{2}, \ldots, x_{n}\right) \oplus\left(y_{1}, y_{2}, \ldots, y_{n}\right) \\
& =\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right) \\
a \odot \mathbf{u} & =\left(a x_{1}, a x_{2}, \ldots, a x_{n}\right) .
\end{aligned}
$$

Then \mathbb{R}^{n} is a vector space with respect to \oplus and \odot.

Example 5: The set

$$
M_{m n}=\left\{\left[a_{i j}\right]_{m \times n} \mid a_{i j} \in \mathbb{R}\right\}
$$

of all $m \times n$ matrices with real entries

Example 5: The set

$$
M_{m n}=\left\{\left[a_{i j}\right]_{m \times n} \mid a_{i j} \in \mathbb{R}\right\}
$$

of all $m \times n$ matrices with real entries is a vector space with respect to the following operations:

- $\left[a_{i j}\right]_{m \times n} \oplus\left[b_{i j}\right]_{m \times n}=\left[a_{i j}+b_{i j}\right]_{m \times n} \quad$ (vector addition)
- $a \odot\left[a_{i j}\right]_{m \times n}=\left[a a_{i j}\right]_{m \times n} \quad$ (scalar multiplication)
for all $a \in \mathbb{R}$ and $\left[a_{i j}\right]_{m \times n},\left[b_{i j}\right]_{m \times n} \in M_{m n}$.

Theorem 4.1.1: Let V be a vector space. Then for every $\mathbf{u} \in V$ and $k \in \mathbb{R}$, we have

- $k 0_{V}=0_{V}$
- $0 \mathbf{u}=0_{V}$
- $(-1) \mathbf{u}=-\mathbf{u}$
- If $k \mathbf{u}=0_{V}$, then $k=0$ or $\mathbf{u}=0_{V}$.

Lecture 2

Subspaces

Subspaces

Definition: A nonempty subset W of a vector space V is said to be a subspace of V if W is itself a vector space with respect to the same operations (vector addition and scalar multiplication) of V.

Subspaces

Definition: A nonempty subset W of a vector space V is said to be a subspace of V if W is itself a vector space with respect to the same operations (vector addition and scalar multiplication) of V.

Note that every vector space V has at least two subspaces: $\{0\}$ and V itself.

Subspaces

Definition: A nonempty subset W of a vector space V is said to be a subspace of V if W is itself a vector space with respect to the same operations (vector addition and scalar multiplication) of V.

Note that every vector space V has at least two subspaces: $\{0\}$ and V itself. The subspace $\{0\}$ is known as zero (trivial) subspace.

Example: The set

$$
W=\left\{(x, y) \in \mathbb{R}^{2} \mid y=0\right\}
$$

forms a vector space with respect to usual vector addition and scalar multiplication in \mathbb{R}^{2}.

Example: The set

$$
W=\left\{(x, y) \in \mathbb{R}^{2} \mid y=0\right\}
$$

forms a vector space with respect to usual vector addition and scalar multiplication in \mathbb{R}^{2}. Thus, W is a subspace of \mathbb{R}^{2}.

Example: The set

$$
W=\left\{(x, y) \in \mathbb{R}^{2} \mid y=0\right\}
$$

forms a vector space with respect to usual vector addition and scalar multiplication in \mathbb{R}^{2}. Thus, W is a subspace of \mathbb{R}^{2}.

Question: Does the set

$$
W=\left\{(x, y) \in \mathbb{R}^{2} \mid x \neq y\right\}
$$

form a subspace of \mathbb{R}^{2} ?

Theorem: A nonempty subset W of a vector space V is a subspace of V if and only if the following conditions hold:

Theorem: A nonempty subset W of a vector space V is a subspace of V if and only if the following conditions hold:

- If \mathbf{u} and \mathbf{v} are vectors in W, then $\mathbf{u}+\mathbf{v}$ is in W.
- If k is a scalar and \mathbf{u} is a vector in W, then $k \mathbf{u}$ is in W.

Theorem: A nonempty subset W of a vector space V is a subspace of V if and only if the following conditions hold:

- If \mathbf{u} and \mathbf{v} are vectors in W, then $\mathbf{u}+\mathbf{v}$ is in W.
- If k is a scalar and \mathbf{u} is a vector in W, then $k \mathbf{u}$ is in W.

In words, A nonempty subset W of a vector space V is a subspace of V if and only if W is closed under vector addition and scalar multiplication.

Theorem: A nonempty subset W of a vector space V is a subspace of V if and only if the following conditions hold:

- If \mathbf{u} and \mathbf{v} are vectors in W, then $\mathbf{u}+\mathbf{v}$ is in W.
- If k is a scalar and \mathbf{u} is a vector in W, then $k \mathbf{u}$ is in W.

In words, A nonempty subset W of a vector space V is a subspace of V if and only if W is closed under vector addition and scalar multiplication.

Remark: If W is a subspace of a vector space V, then $0 \in W$.

Exercise: Examine whether the following sets are

 subspaces of the vector space \mathbb{R}^{3}.- $W_{1}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x \geq 0\right\}$.

Exercise: Examine whether the following sets are

 subspaces of the vector space \mathbb{R}^{3}.- $W_{1}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x \geq 0\right\}$.
- $W_{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$.

Exercise: Examine whether the following sets are

 subspaces of the vector space \mathbb{R}^{3}.- $W_{1}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x \geq 0\right\}$.
- $W_{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$.
- $W_{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=y^{2}\right\}$.

Exercise: Examine whether the following sets are

 subspaces of the vector space \mathbb{R}^{3}.- $W_{1}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x \geq 0\right\}$.
- $W_{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$.
- $W_{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=y^{2}\right\}$.
- $W_{4}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=2\right\}$.

Exercise: Examine whether the following sets are subspaces of the vector space \mathbb{R}^{3}.

- $W_{1}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x \geq 0\right\}$.
- $W_{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$.
- $W_{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=y^{2}\right\}$.
- $W_{4}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=2\right\}$.
- $W_{5}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$.

Exercise: Examine whether the following sets are subspaces of the vector space M_{22}

- $W_{1}=\left\{A \in M_{22} \mid A\right.$ is singular $\}$.
- $W_{2}=\left\{A \in M_{22} \mid A\right.$ is nonsingular $\}$.
- $W_{4}=\left\{A \in M_{22} \mid A\right.$ is symmetric $\}$.
- $W_{5}=\left\{A \in M_{22} \mid A^{2}=A\right\}$.

Results: Let W_{1} and W_{2} be two subspaces of vector space V. Then

Results: Let W_{1} and W_{2} be two subspaces of vector space V. Then

- their intersection i.e. $W_{1} \cap W_{2}$ is a subspace of V.

Results: Let W_{1} and W_{2} be two subspaces of vector space V. Then

- their intersection i.e. $W_{1} \cap W_{2}$ is a subspace of V.
- their sum, defined as

$$
W_{1}+W_{2}=\left\{w_{1}+w_{2} \mid w_{1} \in W_{1}, w_{2} \in W_{2}\right\}
$$

is a subspace of V.

Results: Let W_{1} and W_{2} be two subspaces of vector space V. Then

- their intersection i.e. $W_{1} \cap W_{2}$ is a subspace of V.
- their union $W_{1} \cup W_{2}$ need not be a subspace of V.
- their sum, defined as

$$
W_{1}+W_{2}=\left\{w_{1}+w_{2} \mid w_{1} \in W_{1}, w_{2} \in W_{2}\right\}
$$

is a subspace of V.

Results: Let W_{1} and W_{2} be two subspaces of vector space V. Then

- their intersection i.e. $W_{1} \cap W_{2}$ is a subspace of V.
- their union $W_{1} \cup W_{2}$ need not be a subspace of V.
- $W_{1} \cup W_{2}$ is subspace of V if and only if either $W_{1} \subset W_{2}$ or $W_{2} \subset W_{1}$.
- their sum, defined as

$$
W_{1}+W_{2}=\left\{w_{1}+w_{2} \mid w_{1} \in W_{1}, w_{2} \in W_{2}\right\}
$$

is a subspace of V.

Lecture 3

Linear combination: Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r} \in V$. Then a vector $\mathbf{w} \in V$ is said to be a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ if

Linear combination: Let V be a vector space and

 $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r} \in V$. Then a vector $\mathbf{w} \in V$ is said to be a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ if$$
\mathbf{w}=k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\cdots+k_{r} \mathbf{v}_{r}
$$

Linear combination: Let V be a vector space and

 $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r} \in V$. Then a vector $\mathbf{w} \in V$ is said to be a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ if$$
\mathbf{w}=k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\cdots+k_{r} \mathbf{v}_{r} ; \quad k_{i}(1 \leq i \leq r) \in \mathbb{R}
$$

Linear combination: Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r} \in V$. Then a vector $\mathbf{w} \in V$ is said to be a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ if

$$
\mathbf{w}=k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\cdots+k_{r} \mathbf{v}_{r} ; \quad k_{i}(1 \leq i \leq r) \in \mathbb{R}
$$

Example: The vector $(3,4)$ is a linear combination of $(1,0)$ and $(0,1)$ in \mathbb{R}^{2}.

Linear combination: Let V be a vector space and

 $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r} \in V$. Then a vector $\mathbf{w} \in V$ is said to be a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ if$$
\mathbf{w}=k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\cdots+k_{r} \mathbf{v}_{r} ; \quad k_{i}(1 \leq i \leq r) \in \mathbb{R}
$$

Example: The vector $(3,4)$ is a linear combination of $(1,0)$ and $(0,1)$ in \mathbb{R}^{2}.
Note that

$$
(3,4)=2(1,1)+(1,2)
$$

Linear combination: Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r} \in V$. Then a vector $\mathbf{w} \in V$ is said to be a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ if

$$
\mathbf{w}=k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\cdots+k_{r} \mathbf{v}_{r} ; \quad k_{i}(1 \leq i \leq r) \in \mathbb{R}
$$

Example: The vector $(3,4)$ is a linear combination of $(1,0)$ and $(0,1)$ in \mathbb{R}^{2}.
Note that

$$
(3,4)=2(1,1)+(1,2) .
$$

Thus, $(3,4)$ is a linear combination of $(1,1)$ and $(1,2)$ also.

Span of a set: Let S be a nonempty subset of a vector space V. Then the span of S is the set of all possible (finite) linear combinations of the vectors in S and it is denoted by $\operatorname{span}(S)$

Span of a set: Let S be a nonempty subset of a vector space V. Then the span of S is the set of all possible (finite) linear combinations of the vectors in S and it is denoted by $\operatorname{span}(S)$ i.e. if
$S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$, then

Span of a set: Let S be a nonempty subset of a vector space V. Then the span of S is the set of all possible (finite) linear combinations of the vectors in S and it is denoted by $\operatorname{span}(S)$ i.e. if
$S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$, then

$$
\operatorname{span}(S)=\left\{a_{1} \mathbf{v}_{1}+\cdots+a_{k} \mathbf{v}_{k} \mid a_{i} \in \mathbb{R}, 1 \leq i \leq k\right\}
$$

Span of a set: Let S be a nonempty subset of a vector space V. Then the span of S is the set of all possible (finite) linear combinations of the vectors in S and it is denoted by $\operatorname{span}(S)$ i.e. if
$S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$, then

$$
\operatorname{span}(S)=\left\{a_{1} \mathbf{v}_{1}+\cdots+a_{k} \mathbf{v}_{k} \mid a_{i} \in \mathbb{R}, 1 \leq i \leq k\right\}
$$

- For a subset $S=\{(1,0),(0,1)\}$ of \mathbb{R}^{2}, we have $\operatorname{span}(S)$

Span of a set: Let S be a nonempty subset of a vector space V. Then the span of S is the set of all possible (finite) linear combinations of the vectors in S and it is denoted by $\operatorname{span}(S)$ i.e. if
$S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$, then

$$
\operatorname{span}(S)=\left\{a_{1} \mathbf{v}_{1}+\cdots+a_{k} \mathbf{v}_{k} \mid a_{i} \in \mathbb{R}, 1 \leq i \leq k\right\}
$$

- For a subset $S=\{(1,0),(0,1)\}$ of \mathbb{R}^{2}, we have $\operatorname{span}(S)=\mathbb{R}^{2}$.

Span of a set: Let S be a nonempty subset of a vector space V. Then the span of S is the set of all possible (finite) linear combinations of the vectors in S and it is denoted by $\operatorname{span}(S)$ i.e. if
$S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$, then

$$
\operatorname{span}(S)=\left\{a_{1} \mathbf{v}_{1}+\cdots+a_{k} \mathbf{v}_{k} \mid a_{i} \in \mathbb{R}, 1 \leq i \leq k\right\}
$$

- For a subset $S=\{(1,0),(0,1)\}$ of \mathbb{R}^{2}, we have $\operatorname{span}(S)=\mathbb{R}^{2}$.
- For a subset $S=\{(1,0,0),(0,1,0),(0,0,1)\}$ of \mathbb{R}^{3}, we have span (S)

Span of a set: Let S be a nonempty subset of a vector space V. Then the span of S is the set of all possible (finite) linear combinations of the vectors in S and it is denoted by $\operatorname{span}(S)$ i.e. if
$S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$, then

$$
\operatorname{span}(S)=\left\{a_{1} \mathbf{v}_{1}+\cdots+a_{k} \mathbf{v}_{k} \mid a_{i} \in \mathbb{R}, 1 \leq i \leq k\right\}
$$

- For a subset $S=\{(1,0),(0,1)\}$ of \mathbb{R}^{2}, we have $\operatorname{span}(S)=\mathbb{R}^{2}$.
- For a subset $S=\{(1,0,0),(0,1,0),(0,0,1)\}$ of \mathbb{R}^{3}, we have $\operatorname{span}(S)=\mathbb{R}^{3}$.

Exercise: Let $V=\mathbb{R}^{3}$ and $S=\{(1,0,0),(0,1,0)\}$.

- Find $\operatorname{span}(S)$.
- Do $(3,2,0)$ and $(2,5,1)$ belong to $\operatorname{span}(S)$?

Exercise: Let $V=\mathbb{R}^{3}$ and $S=\{(1,0,0),(0,1,0)\}$.

- Find $\operatorname{span}(S)$.
- Do $(3,2,0)$ and $(2,5,1)$ belong to $\operatorname{span}(S)$?

Solution:

$$
\begin{aligned}
\operatorname{span}(S) & =\{a(1,0,0)+b(0,1,0) \mid a, b \in \mathbb{R}\} \\
& =\{(a, b, 0) \mid a, b \in \mathbb{R}\}
\end{aligned}
$$

Clearly, $(3,2,0) \in \operatorname{span}(S)$ but $(2,5,1) \notin \operatorname{span}(S)$.
In this exercise note that $\operatorname{span}(S)$ is a subspace of \mathbb{R}^{3}.

Exercise: Let $V=\mathbb{R}^{3}$ and $S=\{(1,0,0),(0,1,0)\}$.

- Find $\operatorname{span}(S)$.
- Do $(3,2,0)$ and $(2,5,1)$ belong to $\operatorname{span}(S)$?

Solution:

$$
\begin{aligned}
\operatorname{span}(S) & =\{a(1,0,0)+b(0,1,0) \mid a, b \in \mathbb{R}\} \\
& =\{(a, b, 0) \mid a, b \in \mathbb{R}\}
\end{aligned}
$$

Exercise: Let $V=\mathbb{R}^{3}$ and $S=\{(1,0,0),(0,1,0)\}$.

- Find $\operatorname{span}(S)$.
- Do $(3,2,0)$ and $(2,5,1)$ belong to $\operatorname{span}(S)$?

Solution:

$$
\begin{aligned}
\operatorname{span}(S) & =\{a(1,0,0)+b(0,1,0) \mid a, b \in \mathbb{R}\} \\
& =\{(a, b, 0) \mid a, b \in \mathbb{R}\}
\end{aligned}
$$

Clearly, $(3,2,0) \in \operatorname{span}(S)$ but $(2,5,1) \notin \operatorname{span}(S)$.

Exercise: Let $V=\mathbb{R}^{3}$ and $S=\{(1,0,0),(0,1,0)\}$.

- Find $\operatorname{span}(S)$.
- Do $(3,2,0)$ and $(2,5,1)$ belong to $\operatorname{span}(S)$?

Solution:

$$
\begin{aligned}
\operatorname{span}(S) & =\{a(1,0,0)+b(0,1,0) \mid a, b \in \mathbb{R}\} \\
& =\{(a, b, 0) \mid a, b \in \mathbb{R}\}
\end{aligned}
$$

Clearly, $(3,2,0) \in \operatorname{span}(S)$ but $(2,5,1) \notin \operatorname{span}(S)$.
In this exercise note that $\operatorname{span}(S)$ is a subspace of \mathbb{R}^{3}.

Exercise: Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ be in a vector space V. Then show that $W=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a subspace of V.

Exercise: Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ be in a vector space V. Then show that $W=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a subspace of V.

Theorem Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ be a nonempty subset of a vector space V. Then

- $\operatorname{span}(S)$ is a subspace of V.
- $\operatorname{span}(S)$ is the smallest subspace of V containing S.

Convention: $\operatorname{span}(\emptyset)=\{0\}$.

Exercise: Determine whether the vectors

 $\mathbf{v}_{1}=(1,2,3), \mathbf{v}_{2}=(2,0,0)$ and $\mathbf{v}_{3}=(-2,1,0)$ span the vector space \mathbb{R}^{3}.
Exercise: Determine whether the vectors

$\mathbf{v}_{1}=(1,2,3), \mathbf{v}_{2}=(2,0,0)$ and $\mathbf{v}_{3}=(-2,1,0)$ span the vector space \mathbb{R}^{3}.

Solution: Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. Clearly, by definition of $\operatorname{span}(S)$, we have $\operatorname{span}(S) \subseteq \mathbb{R}^{3}$.

Exercise: Determine whether the vectors

$\mathbf{v}_{1}=(1,2,3), \mathbf{v}_{2}=(2,0,0)$ and $\mathbf{v}_{3}=(-2,1,0)$ span the vector space \mathbb{R}^{3}.

Solution: Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. Clearly, by definition of $\operatorname{span}(S)$, we have $\operatorname{span}(S) \subseteq \mathbb{R}^{3}$. In order to check $\operatorname{span}(S)=\mathbb{R}^{3}$, we have to check whether \mathbb{R}^{3} is subset of $\operatorname{span}(S)$ or not.

Exercise: Determine whether the vectors
$\mathbf{v}_{1}=(1,2,3), \mathbf{v}_{2}=(2,0,0)$ and $\mathbf{v}_{3}=(-2,1,0)$ span the vector space \mathbb{R}^{3}.

Solution: Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. Clearly, by definition of $\operatorname{span}(S)$, we have $\operatorname{span}(S) \subseteq \mathbb{R}^{3}$. In order to check $\operatorname{span}(S)=\mathbb{R}^{3}$, we have to check whether \mathbb{R}^{3} is subset of span(S) or not.
Let (a, b, c) be an arbitrary element of \mathbb{R}^{3}. We must check whether (a, b, c) belongs to $\operatorname{span}(S)$ or not

Exercise: Determine whether the vectors
$\mathbf{v}_{1}=(1,2,3), \mathbf{v}_{2}=(2,0,0)$ and $\mathbf{v}_{3}=(-2,1,0)$ span the vector space \mathbb{R}^{3}.

Solution: Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$. Clearly, by definition of $\operatorname{span}(S)$, we have $\operatorname{span}(S) \subseteq \mathbb{R}^{3}$. In order to check $\operatorname{span}(S)=\mathbb{R}^{3}$, we have to check whether \mathbb{R}^{3} is subset of span(S) or not.
Let (a, b, c) be an arbitrary element of \mathbb{R}^{3}. We must check whether (a, b, c) belongs to span (S) or not i.e. whether there exists $k_{1}, k_{2}, k_{3} \in \mathbb{R}$ such that

$$
(a, b, c)=k_{1}(1,2,3)+k_{2}(2,0,0)+k_{3}(-2,-1,0)
$$

This is equivalent to check whether the system of equations

$$
\begin{aligned}
k_{1}+2 k_{2}-2 k_{3} & =a \\
2 k_{1}-k_{3} & =b \\
3 k_{1} & =c
\end{aligned}
$$

is consistent for any $a, b, c \in \mathbb{R}$.

This is equivalent to check whether the system of equations

$$
\begin{aligned}
k_{1}+2 k_{2}-2 k_{3} & =a \\
2 k_{1}-k_{3} & =b \\
3 k_{1} & =c
\end{aligned}
$$

is consistent for any $a, b, c \in \mathbb{R}$.
Note that the reduced row echelon form of the coefficient matrix

$$
\left[\begin{array}{rrr}
1 & 2 & -2 \\
2 & 0 & -1 \\
3 & 0 & 0
\end{array}\right] \text { is }
$$

This is equivalent to check whether the system of equations

$$
\begin{aligned}
k_{1}+2 k_{2}-2 k_{3} & =a \\
2 k_{1}-k_{3} & =b \\
3 k_{1} & =c
\end{aligned}
$$

is consistent for any $a, b, c \in \mathbb{R}$.
Note that the reduced row echelon form of the coefficient matrix

$$
\left[\begin{array}{rrr}
1 & 2 & -2 \\
2 & 0 & -1 \\
3 & 0 & 0
\end{array}\right] \text { is }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

This is equivalent to check whether the system of equations

$$
\begin{aligned}
k_{1}+2 k_{2}-2 k_{3} & =a \\
2 k_{1}-k_{3} & =b \\
3 k_{1} & =c
\end{aligned}
$$

is consistent for any $a, b, c \in \mathbb{R}$.
Note that the reduced row echelon form of the coefficient matrix

$$
\left[\begin{array}{rrr}
1 & 2 & -2 \\
2 & 0 & -1 \\
3 & 0 & 0
\end{array}\right] \text { is }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Thus, the above system is consistent for any $a, b, c \in \mathbb{R}$. Hence, $\operatorname{span}(S)=\mathbb{R}^{3}$.

Thus, the above system is consistent for any $a, b, c \in \mathbb{R}$. Hence, $\operatorname{span}(S)=\mathbb{R}^{3}$.

Exercise Determine whether the vectors
$\mathbf{v}_{1}=(3,2,4), \mathbf{v}_{2}=(-3,-1,0), \mathbf{v}_{3}=(0,1,4)$ and
$\mathbf{v}_{4}=(0,2,8)$ span the vector space \mathbb{R}^{3}.

Thus, the above system is consistent for any $a, b, c \in \mathbb{R}$. Hence, $\operatorname{span}(S)=\mathbb{R}^{3}$.

Exercise Determine whether the vectors
$\mathbf{v}_{1}=(3,2,4), \mathbf{v}_{2}=(-3,-1,0), \mathbf{v}_{3}=(0,1,4)$ and
$\mathbf{v}_{4}=(0,2,8)$ span the vector space \mathbb{R}^{3}.

Hint: By the similar argument, used in previous exercise, one should check whether the system of equations

$$
\begin{aligned}
3 k_{1}-3 k_{2} & =a \\
2 k_{1}-k_{2}+k_{3}+2 k_{4} & =b \\
4 k_{1}+4 k_{3}+8 k_{4} & =c
\end{aligned}
$$

is consistent for any $a, b, c \in \mathbb{R}$.

$$
\begin{aligned}
3 k_{1}-3 k_{2} & =a \\
2 k_{1}-k_{2}+k_{3}+2 k_{4} & =b \\
4 k_{1}+4 k_{3}+8 k_{4} & =c
\end{aligned}
$$

is consistent for any $a, b, c \in \mathbb{R}$.
Now show that the reduced row echelon form of the augmented matrix

$$
\left[\begin{array}{rrrrr}
3 & -3 & 0 & 0 & a \\
2 & -1 & 1 & 2 & b \\
4 & 0 & 4 & 8 & c
\end{array}\right] \text { is }
$$

$$
\begin{aligned}
3 k_{1}-3 k_{2} & =a \\
2 k_{1}-k_{2}+k_{3}+2 k_{4} & =b \\
4 k_{1}+4 k_{3}+8 k_{4} & =c
\end{aligned}
$$

is consistent for any $a, b, c \in \mathbb{R}$.
Now show that the reduced row echelon form of the augmented matrix

$$
\left[\begin{array}{rrrrr}
3 & -3 & 0 & 0 & a \\
2 & -1 & 1 & 2 & b \\
4 & 0 & 4 & 8 & c
\end{array}\right] \text { is }\left[\begin{array}{llllr}
1 & 0 & 1 & 2 & b-\frac{a}{3} \\
0 & 1 & 1 & 2 & b-\frac{2 a}{3} \\
0 & 0 & 0 & 0 & 4 a-12 b+3 c
\end{array}\right]
$$

Since the system is not consistent for all choices of

 $(a, b, c) \in \mathbb{R}^{3}$. Hence, $\operatorname{span}(S) \neq \mathbb{R}^{3}$.Since the system is not consistent for all choices of $(a, b, c) \in \mathbb{R}^{3}$. Hence, $\operatorname{span}(S) \neq \mathbb{R}^{3}$.

Note that the vector $(0,0,1) \in \mathbb{R}^{3}$ but it is not in $\operatorname{span}(S)$.

Lecture 4

Linear Independence

Linear Independence

Definition: A subset $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ of a vector space V is said to be linearly dependent (LD) if there exist real numbers $a_{1}, a_{2}, \ldots, a_{n}$ not all zero such that

$$
a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{n} \mathbf{v}_{n}=0
$$

Linear Independence

Definition: A subset $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ of a vector space V is said to be linearly dependent (LD) if there exist real numbers $a_{1}, a_{2}, \ldots, a_{n}$ not all zero such that

$$
a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{n} \mathbf{v}_{n}=0
$$

S is linearly independent (LI) if it is not linearly dependent

Linear Independence

Definition: A subset $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ of a vector space V is said to be linearly dependent (LD) if there exist real numbers $a_{1}, a_{2}, \ldots, a_{n}$ not all zero such that

$$
a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{n} \mathbf{v}_{n}=0
$$

S is linearly independent (LI) if it is not linearly dependent i.e. if

$$
a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{n} \mathbf{v}_{n}=0
$$

Then

$$
a_{1}=a_{2}=\cdots=a_{n}=0
$$

Examples

- The subset $S=\{(1,0),(0,1)\}$ of \mathbb{R}^{2} is

Examples

- The subset $S=\{(1,0),(0,1)\}$ of \mathbb{R}^{2} is linearly independent.

Examples

- The subset $S=\{(1,0),(0,1)\}$ of \mathbb{R}^{2} is linearly independent.
- The subset $S=\{(1,2),(5,10)\}$ of \mathbb{R}^{2} is

Examples

- The subset $S=\{(1,0),(0,1)\}$ of \mathbb{R}^{2} is linearly independent.
- The subset $S=\{(1,2),(5,10)\}$ of \mathbb{R}^{2} is linearly dependent.

Examples

- The subset $S=\{(1,0),(0,1)\}$ of \mathbb{R}^{2} is linearly independent.
- The subset $S=\{(1,2),(5,10)\}$ of \mathbb{R}^{2} is linearly dependent.
- The subset $S=\{(1,0,0),(0,1,0),(0,0,1)\}$ of \mathbb{R}^{3} is

Examples

- The subset $S=\{(1,0),(0,1)\}$ of \mathbb{R}^{2} is linearly independent.
- The subset $S=\{(1,2),(5,10)\}$ of \mathbb{R}^{2} is linearly dependent.
- The subset $S=\{(1,0,0),(0,1,0),(0,0,1)\}$ of \mathbb{R}^{3} is linearly independent.
- The singleton set containing $0 \in V$ i.e. $\{0\}$
- The singleton set containing $0 \in V$ i.e. $\{0\}$ is LD.
- The singleton set containing $0 \in V$ i.e. $\{0\}$ is LD.
- For $\mathbf{v} \neq 0$ of V, the set $\{\mathbf{v}\}$
- The singleton set containing $0 \in V$ i.e. $\{0\}$ is LD.
- For $\mathbf{v} \neq 0$ of V, the set $\{\mathbf{v}\}$ is Ll .
- The singleton set containing $0 \in V$ i.e. $\{0\}$ is LD.
- For $\mathbf{v} \neq 0$ of V, the set $\{\mathbf{v}\}$ is Ll .
- Any set containing zero vector is
- The singleton set containing $0 \in V$ i.e. $\{0\}$ is LD.
- For $\mathbf{v} \neq 0$ of V, the set $\{\mathbf{v}\}$ is Ll .
- Any set containing zero vector is LD.
- The singleton set containing $0 \in V$ i.e. $\{0\}$ is LD.
- For $\mathbf{v} \neq 0$ of V, the set $\{\mathbf{v}\}$ is Ll .
- Any set containing zero vector is LD.
- Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ be a set of nonzero vectors of V. Then S is linearly dependent iff one vector is a scalar multiple of the other.
- The singleton set containing $0 \in V$ i.e. $\{0\}$ is LD.
- For $\mathbf{v} \neq 0$ of V, the set $\{\mathbf{v}\}$ is Ll .
- Any set containing zero vector is LD.
- Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ be a set of nonzero vectors of V. Then S is linearly dependent iff one vector is a scalar multiple of the other.
- Let S be a finite set of nonzero vectors having at least two elements. Then S is LD if and only if some vector in S can be expressed as a linear combination of the other vectors in S.

Example: Show that

$$
S=\{(3,1,-1),(-5,-2,2),(2,2,-1)\}
$$

is linearly independent subset of \mathbb{R}^{3}.

Example: Show that

$$
S=\{(3,1,-1),(-5,-2,2),(2,2,-1)\}
$$

is linearly independent subset of \mathbb{R}^{3}.
Solution: Let $a, b, c \in \mathbb{R}$ such that

$$
a(3,1,-1)+b(-5,-2,2)+c(2,2,-1)=0
$$

Example: Show that

$$
S=\{(3,1,-1),(-5,-2,2),(2,2,-1)\}
$$

is linearly independent subset of \mathbb{R}^{3}.
Solution: Let $a, b, c \in \mathbb{R}$ such that

$$
\begin{gathered}
a(3,1,-1)+b(-5,-2,2)+c(2,2,-1)=0 \\
(3 a, a,-a)+(-5 b,-2 b, 2 b)+(2 c, 2 c,-c)=(0,0,0)
\end{gathered}
$$

Example: Show that

$$
S=\{(3,1,-1),(-5,-2,2),(2,2,-1)\}
$$

is linearly independent subset of \mathbb{R}^{3}.
Solution: Let $a, b, c \in \mathbb{R}$ such that

$$
\begin{gathered}
a(3,1,-1)+b(-5,-2,2)+c(2,2,-1)=0 \\
(3 a, a,-a)+(-5 b,-2 b, 2 b)+(2 c, 2 c,-c)=(0,0,0) \\
(3 a-5 b+2 c, a-2 b+2 c,-a+2 b-c)=(0,0,0)
\end{gathered}
$$

To find $a, b, c \in \mathbb{R}$, we need to solve the following homogenous system:

To find $a, b, c \in \mathbb{R}$, we need to solve the following homogenous system:

$$
\begin{array}{r}
3 a-5 b+2 c=0 \\
a-2 b+2 c=0 \\
-a+2 b-c=0
\end{array}
$$

To find $a, b, c \in \mathbb{R}$, we need to solve the following homogenous system:

$$
\begin{array}{r}
3 a-5 b+2 c=0 \\
a-2 b+2 c=0 \\
-a+2 b-c=0
\end{array}
$$

To solve above homogenous system, write augmented matrix

$$
\left[\begin{array}{ll}
A & 0
\end{array}\right]=\left[\begin{array}{rrrr}
3 & -5 & 2 & 0 \\
1 & -2 & 2 & 0 \\
-1 & 2 & -1 & 0
\end{array}\right]
$$

reduced row echelon form of $\left[\begin{array}{ll}A & 0\end{array}\right]$ is

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Thus, we have $a=0, b=0, c=0$.

reduced row echelon form of $\left[\begin{array}{ll}A & 0\end{array}\right]$ is

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Thus, we have $a=0, b=0, c=0$. Hence, S is linearly independent subset of \mathbb{R}^{3}.

Exercise: For a given vector space V and a given

 subset S of V, check the linear independence of S in the following:(1) $V=P_{2}, S=\left\{(x-2)^{2}, x^{2}-4 x, 12\right\}$.

Exercise: For a given vector space V and a given subset S of V, check the linear independence of S in the following:
(1) $V=P_{2}, S=\left\{(x-2)^{2}, x^{2}-4 x, 12\right\}$.
(2) $V=P_{2}, S=\left\{1+x, x+x^{2}, 1+x^{2}\right\}$.

Exercise: For a given vector space V and a given subset S of V, check the linear independence of S in the following:
(c) $V=P_{2}, S=\left\{(x-2)^{2}, x^{2}-4 x, 12\right\}$.
(2) $V=P_{2}, S=\left\{1+x, x+x^{2}, 1+x^{2}\right\}$.
(3) $V=P_{n}, S=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$.

Exercise: For a given vector space V and a given subset S of V, check the linear independence of S in the following:
(c) $V=P_{2}, S=\left\{(x-2)^{2}, x^{2}-4 x, 12\right\}$.
(2) $V=P_{2}, S=\left\{1+x, x+x^{2}, 1+x^{2}\right\}$.
(3) $V=P_{n}, S=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$.
(4) $V=M_{22}, S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$.

Exercise: For a given vector space V and a given subset S of V, check the linear independence of S in the following:
(c) $V=P_{2}, S=\left\{(x-2)^{2}, x^{2}-4 x, 12\right\}$.
(2) $V=P_{2}, S=\left\{1+x, x+x^{2}, 1+x^{2}\right\}$.
(3) $V=P_{n}, S=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$.
(4) $V=M_{22}, S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$.

Theorem: If S is any subset of \mathbb{R}^{n} containing r distinct vectors, where $r>n$, then S is linearly dependent.

Theorem: If S is any subset of \mathbb{R}^{n} containing r distinct vectors, where $r>n$, then S is linearly dependent.

Exercise: Examine the linear independence of a subset $S=\{(2,-5,1),(1,1,-1),(0,2,-3),(2,2,6)\}$ of \mathbb{R}^{3}.

Lecture 5

Coordinates and Basis

Coordinates and Basis

Definition: A finite subset $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ of a vector space V is said to be a basis of V if
(1) S is LI , and
(2) $\operatorname{span}(S)=V$.

Examples

- The subset $S=\{(1,0),(0,1)\}=\left\{e_{1}, e_{2}\right\}$ is a basis of \mathbb{R}^{2} as B is LI and $\operatorname{span}(S)=\mathbb{R}^{2}$.

Examples

- The subset $S=\{(1,0),(0,1)\}=\left\{e_{1}, e_{2}\right\}$ is a basis of \mathbb{R}^{2} as B is Ll and $\operatorname{span}(S)=\mathbb{R}^{2}$. The subset S is called the standard basis of \mathbb{R}^{2}.

Examples

- The subset $S=\{(1,0),(0,1)\}=\left\{e_{1}, e_{2}\right\}$ is a basis of \mathbb{R}^{2} as B is Ll and $\operatorname{span}(S)=\mathbb{R}^{2}$. The subset S is called the standard basis of \mathbb{R}^{2}.
- The subset $S=\{(1,0,0),(0,1,0),(0,0,1)\}$, also denoted by $\left\{e_{1}, e_{2}, e_{3}\right\}$, is a basis of \mathbb{R}^{3} as it is LI and $\operatorname{span}(S)=\mathbb{R}^{3}$.

Examples

- The subset $S=\{(1,0),(0,1)\}=\left\{e_{1}, e_{2}\right\}$ is a basis of \mathbb{R}^{2} as B is Ll and $\operatorname{span}(S)=\mathbb{R}^{2}$. The subset S is called the standard basis of \mathbb{R}^{2}.
- The subset $S=\{(1,0,0),(0,1,0),(0,0,1)\}$, also denoted by $\left\{e_{1}, e_{2}, e_{3}\right\}$, is a basis of \mathbb{R}^{3} as it is LI and $\operatorname{span}(S)=\mathbb{R}^{3}$. The subset S is called the standard basis of \mathbb{R}^{3}.

Examples

- The subset $S=\{(1,0),(0,1)\}=\left\{e_{1}, e_{2}\right\}$ is a basis of \mathbb{R}^{2} as B is Ll and $\operatorname{span}(S)=\mathbb{R}^{2}$. The subset S is called the standard basis of \mathbb{R}^{2}.
- The subset $S=\{(1,0,0),(0,1,0),(0,0,1)\}$, also denoted by $\left\{e_{1}, e_{2}, e_{3}\right\}$, is a basis of \mathbb{R}^{3} as it is LI and $\operatorname{span}(S)=\mathbb{R}^{3}$. The subset S is called the standard basis of \mathbb{R}^{3}.

Analogously, $S=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be a standard basis of \mathbb{R}^{n}, where e_{i} is a vector of \mathbb{R}^{n} such that its $i^{\text {th }}$ component is 1 and remaining components are 0 .

Think about some more basis of \mathbb{R}^{2} and \mathbb{R}^{3}.

Think about some more basis of \mathbb{R}^{2} and \mathbb{R}^{3}.

Exercise: Examine whether the subset $S=\{(4,1),(-7,-8)\}$ is a basis of $\mathbb{R}^{2} ?$.

Think about some more basis of \mathbb{R}^{2} and \mathbb{R}^{3}.

Exercise: Examine whether the subset $S=\{(4,1),(-7,-8)\}$ is a basis of $\mathbb{R}^{2} ?$.

Example: Show that the vectors $\mathbf{v}_{1}=(1,2,1)$, $\mathbf{v}_{2}=(2,9,0)$ and $\mathbf{v}_{3}=(3,3,4)$ form a basis of \mathbb{R}^{3}.

- The subset $S=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a basis of P_{n} as S is LI (verify!) and $\operatorname{span}(S)=P_{n}$ (verify!).
- The subset $S=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a basis of P_{n} as S is LI (verify!) and $\operatorname{span}(S)=P_{n}$ (verify!). The set S is called the standard basis of P_{n}.
- The subset $S=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a basis of P_{n} as S is LI (verify!) and $\operatorname{span}(S)=P_{n}$ (verify!). The set S is called the standard basis of P_{n}.
- The subset

$$
S=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

is a basis of M_{22}.

- The subset $S=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a basis of P_{n} as S is LI (verify!) and span $(S)=P_{n}$ (verify!). The set S is called the standard basis of P_{n}.
- The subset

$$
S=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

is a basis of M_{22}. The set S is called the standard basis of M_{22}.

Verify that S is LI and $\operatorname{span}(S)=M_{22}$.

Theorem: If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then every vector \mathbf{v} in V can be expressed in the form $\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}$ in exactly one way.

Theorem: If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then every vector \mathbf{v} in V can be expressed in the form $\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}$ in exactly one way.

Definition: If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, and

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}
$$

then the scalars $c_{1}, c_{2}, \ldots, c_{n}$ are called coordinates of \mathbf{v} relative to the basis S.

The vector $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbb{R}^{n}$ constructed from these coordinates is called the coordinate vector of v relative to S; it is denoted by

The vector $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbb{R}^{n}$ constructed from these coordinates is called the coordinate vector of v relative to S; it is denoted by

$$
(\mathbf{v})_{S}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

The vector $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbb{R}^{n}$ constructed from these coordinates is called the coordinate vector of v relative to S; it is denoted by

$$
(\mathbf{v})_{S}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

Remark: Sometime we shall write a coordinate vector as column matrix and in that case it will be denoted by $[\mathbf{v}]_{S}$

The vector $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbb{R}^{n}$ constructed from these coordinates is called the coordinate vector of v relative to S; it is denoted by

$$
(\mathbf{v})_{S}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

Remark: Sometime we shall write a coordinate vector as column matrix and in that case it will be denoted by $[\mathbf{v}]_{S}$ i.e.

$$
[\mathbf{v}]_{S}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]
$$

Exercise: Find the coordinate vector of the

 polynomial $\mathbf{p}=3-x-2 x^{2}$ relative to the basis $S=\left\{1+x, 1+x^{2}, x+x^{2}\right\}$.Exercise: Find the coordinate vector of the polynomial $\mathbf{p}=3-x-2 x^{2}$ relative to the basis $S=\left\{1+x, 1+x^{2}, x+x^{2}\right\}$.

Solution: Consider

$$
\begin{aligned}
3-x-2 x^{2} & =c_{1}(1+x)+c_{2}\left(1+x^{2}\right)+c_{3}\left(x+x^{2}\right) \\
& =\left(c_{1}+c_{2}\right)+\left(c_{1}+c_{3}\right) x+\left(c_{2}+c_{3}\right) x^{2}
\end{aligned}
$$

This leads to solve the system of equations

$$
\begin{aligned}
& c_{1}+c_{2}=3 \\
& c_{1}+c_{3}=-1 \\
& c_{2}+c_{3}=-2
\end{aligned}
$$

Exercise: Find the coordinate vector of the

 polynomial $\mathbf{p}=3-x-2 x^{2}$ relative to the basis $S=\left\{1+x, 1+x^{2}, x+x^{2}\right\}$.
Solution: Consider

$$
\begin{aligned}
3-x-2 x^{2} & =c_{1}(1+x)+c_{2}\left(1+x^{2}\right)+c_{3}\left(x+x^{2}\right) \\
& =\left(c_{1}+c_{2}\right)+\left(c_{1}+c_{3}\right) x+\left(c_{2}+c_{3}\right) x^{2}
\end{aligned}
$$

Exercise: Find the coordinate vector of the

 polynomial $\mathbf{p}=3-x-2 x^{2}$ relative to the basis $S=\left\{1+x, 1+x^{2}, x+x^{2}\right\}$.
Solution: Consider

$$
\begin{aligned}
3-x-2 x^{2} & =c_{1}(1+x)+c_{2}\left(1+x^{2}\right)+c_{3}\left(x+x^{2}\right) \\
& =\left(c_{1}+c_{2}\right)+\left(c_{1}+c_{3}\right) x+\left(c_{2}+c_{3}\right) x^{2}
\end{aligned}
$$

This leads to solve the system of equations

$$
\begin{aligned}
& c_{1}+c_{2}=3 \\
& c_{1}+c_{3}=-1 \\
& c_{2}+c_{3}=-2
\end{aligned}
$$

On solving, we get $c_{1}=2, c_{2}=1, c_{3}=-3$.

On solving, we get $c_{1}=2, c_{2}=1, c_{3}=-3$. Thus,

$$
(\mathbf{p})_{S}=(2,1,-3) .
$$

Lecture 6

Definition: A vector space that can be spanned by finitely many vectors is said be finite dimensional. Otherwise, it is called infinite dimensional.

Definition: A vector space that can be spanned by finitely many vectors is said be finite dimensional. Otherwise, it is called infinite dimensional.

Example: The vector spaces \mathbb{R}^{n}, P_{n} and $M_{m n}$ are finite dimensional,

Definition: A vector space that can be spanned by finitely many vectors is said be finite dimensional. Otherwise, it is called infinite dimensional.

Example: The vector spaces \mathbb{R}^{n}, P_{n} and $M_{m n}$ are finite dimensional, whereas the vector space P_{∞} is infinite dimensional.

Theorem: Let V be a finite dimensional vector

 space, and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be any basisTheorem: Let V be a finite dimensional vector space, and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be any basis

- If a set has more than n vectors, then it is linearly dependent.

Theorem: Let V be a finite dimensional vector space, and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be any basis

- If a set has more than n vectors, then it is linearly dependent.
- If a set has fewer than n vectors, then it does not span V.

Theorem: Let V be a finite dimensional vector space, and let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be any basis

- If a set has more than n vectors, then it is linearly dependent.
- If a set has fewer than n vectors, then it does not span V.

Theorem: All bases for a finite dimensional vector space have the same number of elements.

Definition: The dimension of a finite dimensional

 vector space V is the number of elements in a basis of V
Definition: The dimension of a finite dimensional vector space V is the number of elements in a basis of V and it is denoted by $\operatorname{dim}(V)$.

Definition: The dimension of a finite dimensional

 vector space V is the number of elements in a basis of V and it is denoted by $\operatorname{dim}(V)$.The dimension of the zero vector space $\{0\}$ is defined to be zero.

Examples

- $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$.

Examples

- $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$.
- $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3$.

Examples

- $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$.
- $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3$.
- $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$.

Examples

- $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$.
- $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3$.
- $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$.
- $\operatorname{dim}\left(P_{n}\right)=n+1$.

Examples

- $\operatorname{dim}\left(\mathbb{R}^{2}\right)=2$.
- $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3$.
- $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$.
- $\operatorname{dim}\left(P_{n}\right)=n+1$.
- $\operatorname{dim}\left(M_{m n}\right)=m n$.

Theorem: Let S be a nonempty set of vectors in a vector space V.

- If S is a linearly independent and $\mathbf{v} \in V$ such that $\mathbf{v} \notin \operatorname{span}(S)$, then $S_{1}=S \cup\{\mathbf{v}\}$ is a linearly independent set.

Theorem: Let S be a nonempty set of vectors in a vector space V.

- If S is a linearly independent and $\mathbf{v} \in V$ such that $\mathbf{v} \notin \operatorname{span}(S)$, then $S_{1}=S \cup\{\mathbf{v}\}$ is a linearly independent set.
- If $\mathbf{v} \in S$ such that it can be expressible as a linear combination of other vectors in S, then

$$
\operatorname{span}(S)=\operatorname{span}(S-\{\mathbf{v}\})
$$

Theorem: Let V be an n-dimensional vector space, and let S be a set in V with exactly n vectors.

- S is a basis of V if and only if S spans V.

Theorem: Let V be an n-dimensional vector space, and let S be a set in V with exactly n vectors.

- S is a basis of V if and only if S spans V.
- S is a basis of V if and only if S is linearly independent.

Exercise: For a given vector space V and a given subset S of V, determine which of following S form a basis of the respective vector space V :

Exercise: For a given vector space V and a given subset S of V, determine which of following S form a basis of the respective vector space V :
(ㄷ) $V=\mathbb{R}^{3}, S=\{(3,1,-1),(-5,-2,2),(2,2,-1)\}$.

Exercise: For a given vector space V and a given subset S of V, determine which of following S form a basis of the respective vector space V :
(1) $V=\mathbb{R}^{3}, S=\{(3,1,-1),(-5,-2,2),(2,2,-1)\}$.
(2) $V=\mathbb{R}^{4}, S=\{(7,1,2,0),(8,0,1,-1)\}$.

Exercise: For a given vector space V and a given subset S of V, determine which of following S form a basis of the respective vector space V :
(1) $V=\mathbb{R}^{3}, S=\{(3,1,-1),(-5,-2,2),(2,2,-1)\}$.
(2) $V=\mathbb{R}^{4}, S=\{(7,1,2,0),(8,0,1,-1)\}$.
(3) $V=P_{2}, S=\left\{1+x, x+x^{2}, 1+x^{2}\right\}$.

Exercise: For a given vector space V and a given subset S of V, determine which of following S form a basis of the respective vector space V :
(1) $V=\mathbb{R}^{3}, S=\{(3,1,-1),(-5,-2,2),(2,2,-1)\}$.
(2) $V=\mathbb{R}^{4}, S=\{(7,1,2,0),(8,0,1,-1)\}$.
(3) $V=P_{2}, S=\left\{1+x, x+x^{2}, 1+x^{2}\right\}$.
(4) $V=P_{2}, S=\left\{1-x, x-x^{2}, 1-x^{2}\right\}$.

Exercise: For a given vector space V and a given subset S of V, determine which of following S form a basis of the respective vector space V :
(1) $V=\mathbb{R}^{3}, S=\{(3,1,-1),(-5,-2,2),(2,2,-1)\}$.
(2) $V=\mathbb{R}^{4}, S=\{(7,1,2,0),(8,0,1,-1)\}$.
(3) $V=P_{2}, S=\left\{1+x, x+x^{2}, 1+x^{2}\right\}$.
(4) $V=P_{2}, S=\left\{1-x, x-x^{2}, 1-x^{2}\right\}$.

Lecture 7

Example: Find a basis and the dimension of a subspace W of \mathbb{R}^{3}, where

$$
W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+2 z=0\right\} .
$$

Example: Find a basis and the dimension of a subspace W of \mathbb{R}^{3}, where

$$
W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+2 z=0\right\}
$$

Solution: The general solution of the equation $x+2 z=0$ is given by $\{(-2 s, t, s) \mid t, s \in \mathbb{R}\}$. Thus

$$
\begin{aligned}
& W=\{(-2 s, t, s) \mid t, s \in \mathbb{R}\} \\
& W=\{s(-2,0,1)+t(0,1,0) \mid t, s \in \mathbb{R}\} \\
& W=\operatorname{span}(\{(-2,0,1),(0,1,0)\})
\end{aligned}
$$

Note that the set $\{(-2,0,1),(0,1,0)\}$ is linearly independent (show it).

Example: Find a basis and the dimension of a subspace W of \mathbb{R}^{3}, where

$$
W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+2 z=0\right\}
$$

Solution: The general solution of the equation $x+2 z=0$ is given by $\{(-2 s, t, s) \mid t, s \in \mathbb{R}\}$. Thus

$$
\begin{aligned}
& W=\{(-2 s, t, s) \mid t, s \in \mathbb{R}\} \\
& W=\operatorname{span}(\{(-2,0,1),(0,1,0)\})
\end{aligned}
$$

Note that the set $\{(-2,0,1),(0,1,0)\}$ is linearly independent (show it).

Example: Find a basis and the dimension of a subspace W of \mathbb{R}^{3}, where

$$
W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+2 z=0\right\}
$$

Solution: The general solution of the equation $x+2 z=0$ is given by $\{(-2 s, t, s) \mid t, s \in \mathbb{R}\}$. Thus

$$
W=\{(-2 s, t, s) \mid t, s \in \mathbb{R}\}
$$

Note that the set $\{(-2,0,1),(0,1,0)\}$ is linearly independent (show it).

Example: Find a basis and the dimension of a subspace W of \mathbb{R}^{3}, where

$$
W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+2 z=0\right\}
$$

Solution: The general solution of the equation $x+2 z=0$ is given by $\{(-2 s, t, s) \mid t, s \in \mathbb{R}\}$. Thus

$$
\begin{aligned}
& W=\{(-2 s, t, s) \mid t, s \in \mathbb{R}\} \\
& W=\{s(-2,0,1)+t(0,1,0) \mid t, s \in \mathbb{R}\} \\
& W=\operatorname{span}(\{(-2,0,1),(0,1,0)\})
\end{aligned}
$$

Note that the set $\{(-2,0,1),(0,1,0)\}$ is linearly independent (show it).

Hence, the subset $\{(-2,0,1),(0,1,0)\}$ is a basis of W and $\operatorname{dim}(W)=2$.

Hence, the subset $\{(-2,0,1),(0,1,0)\}$ is a basis of W and $\operatorname{dim}(W)=2$.

Exercise: Find a basis and the dimension of a subspace W of P_{3}, where

$$
W=\left\{\mathbf{p} \in P_{3} \mid \mathbf{p}(2)=0\right\}
$$

Exercise: Find a basis for the solution space of the following homogenous linear system

$$
\begin{aligned}
x+2 y-z & =0 \\
2 x-y+2 z & =0 \\
3 x+y+z & =0 \\
4 x+3 y & =0
\end{aligned}
$$

Hence, find the dimension of the solution space.
Hint: First find the solution set S of given homogenous system of equations

Exercise: Find a basis for the solution space of the following homogenous linear system

$$
\begin{aligned}
x+2 y-z & =0 \\
2 x-y+2 z & =0 \\
3 x+y+z & =0 \\
4 x+3 y & =0
\end{aligned}
$$

Hence, find the dimension of the solution space.
Hint: First find the solution set S of given homogenous system of equations and observe that

$$
S=\left\{t\left(\frac{-3}{5}, \frac{4}{5}, 1\right): t \in \mathbb{R}\right\}
$$

$$
S=\operatorname{span}\left\{\left(\frac{-3}{5}, \frac{4}{5}, 1\right)\right\}
$$

and

$$
S=\operatorname{span}\left\{\left(\frac{-3}{5}, \frac{4}{5}, 1\right)\right\}
$$

and $\left\{\left(\frac{-3}{5}, \frac{4}{5}, 1\right)\right\}$ is LI

$$
S=\operatorname{span}\left\{\left(\frac{-3}{5}, \frac{4}{5}, 1\right)\right\}
$$

and $\left\{\left(\frac{-3}{5}, \frac{4}{5}, 1\right)\right\}$ is LI (why?).

$$
S=\operatorname{span}\left\{\left(\frac{-3}{5}, \frac{4}{5}, 1\right)\right\}
$$

and $\left\{\left(\frac{-3}{5}, \frac{4}{5}, 1\right)\right\}$ is LI (why?). Thus, $\left\{\left(\frac{-3}{5}, \frac{4}{5}, 1\right)\right\}$ forms a basis of solution space and $\operatorname{dim}(S)$

$$
S=\operatorname{span}\left\{\left(\frac{-3}{5}, \frac{4}{5}, 1\right)\right\}
$$

and $\left\{\left(\frac{-3}{5}, \frac{4}{5}, 1\right)\right\}$ is LI (why?). Thus, $\left\{\left(\frac{-3}{5}, \frac{4}{5}, 1\right)\right\}$ forms a basis of solution space and $\operatorname{dim}(S)=1$.

Exercise: Let $S=\{(4,2,1),(2,6,-5),(1,-2,3)\}$ be

 a subset of vector space \mathbb{R}^{3}.- Examine the linear independence of S.

Exercise: Let $S=\{(4,2,1),(2,6,-5),(1,-2,3)\}$ be

 a subset of vector space \mathbb{R}^{3}.- Examine the linear independence of S.
- Find $\operatorname{dim}(\operatorname{span}(S))$.

Exercise: Let $S=\{(4,2,1),(2,6,-5),(1,-2,3)\}$ be

 a subset of vector space \mathbb{R}^{3}.- Examine the linear independence of S.
- Find $\operatorname{dim}(\operatorname{span}(S))$.

Hint:

- Let

$$
a_{1}(4,2,1)+a_{2}(2,6,-5)+a_{3}(1,-2,3)=0=(0,0,0)
$$

Exercise: Let $S=\{(4,2,1),(2,6,-5),(1,-2,3)\}$ be a subset of vector space \mathbb{R}^{3}.

- Examine the linear independence of S.
- Find $\operatorname{dim}(\operatorname{span}(S))$.

Hint:

- Let
$a_{1}(4,2,1)+a_{2}(2,6,-5)+a_{3}(1,-2,3)=0=(0,0,0)$
On solving above system of equations, we get

$$
a_{1}=-1, a_{2}=1, a_{3}=2
$$

implies S is not Ll.

- Note that

$$
(2,6,-5)=(4,2,1)-2(1,-2,3)
$$

implies $\operatorname{span}(S)=\operatorname{span}\left(S^{\prime}\right)$, where

$$
S^{\prime}=\{(4,2,1),(1,-2,3)\}
$$

Now, note that S^{\prime} is LI (Show it).

- Note that

$$
(2,6,-5)=(4,2,1)-2(1,-2,3)
$$

implies $\operatorname{span}(S)=\operatorname{span}\left(S^{\prime}\right)$, where

$$
S^{\prime}=\{(4,2,1),(1,-2,3)\}
$$

Now, note that S^{\prime} is LI (Show it). Thus S^{\prime} (a set of two elements) is a basis of $\operatorname{span}(S)$

- Note that

$$
(2,6,-5)=(4,2,1)-2(1,-2,3)
$$

implies $\operatorname{span}(S)=\operatorname{span}\left(S^{\prime}\right)$, where

$$
S^{\prime}=\{(4,2,1),(1,-2,3)\}
$$

Now, note that S^{\prime} is LI (Show it). Thus S^{\prime} (a set of two elements) is a basis of $\operatorname{span}(S)$ and

$$
\operatorname{dim}(\operatorname{span}(S))=2
$$

Theorem: Let W be a subspace of a finite dimensional vector space V. Then

- W is also finite dimensional and $\operatorname{dim} W \leq \operatorname{dim} V$.
- $\operatorname{dim} W=\operatorname{dim} V$ if and only if $W=V$.

Lecture 8

Subspaces associated with Matrices

Subspaces associated with Matrices

Definition Let A be an $m \times n$ matrix.

- The row space of A is the subspace $\operatorname{row}(A)$ of \mathbb{R}^{n} spanned by the row vectors of A.

Subspaces associated with Matrices

Definition Let A be an $m \times n$ matrix.

- The row space of A is the subspace $\operatorname{row}(A)$ of \mathbb{R}^{n} spanned by the row vectors of A.
- The column space of A is the subspace $\operatorname{col}(A)$ of \mathbb{R}^{m} spanned by the column vectors of A.

Subspaces associated with Matrices

Definition Let A be an $m \times n$ matrix.

- The row space of A is the subspace $\operatorname{row}(A)$ of \mathbb{R}^{n} spanned by the row vectors of A.
- The column space of A is the subspace $\operatorname{col}(A)$ of \mathbb{R}^{m} spanned by the column vectors of A.
- The null space of A is the subspace of \mathbb{R}^{n} consisting of solutions of the homogenous linear system $A \mathrm{x}=0$. It is denoted by $\operatorname{null}(A)$.

Exercise: Find a basis for the null space of

$$
A=\left[\begin{array}{ccccc}
1 & 4 & 5 & 6 & 9 \\
3 & -2 & 1 & 4 & -1 \\
-1 & 0 & -1 & -2 & -1 \\
2 & 3 & 5 & 7 & 8
\end{array}\right]
$$

Exercise: Find a basis for the null space of

$$
A=\left[\begin{array}{ccccc}
1 & 4 & 5 & 6 & 9 \\
3 & -2 & 1 & 4 & -1 \\
-1 & 0 & -1 & -2 & -1 \\
2 & 3 & 5 & 7 & 8
\end{array}\right]
$$

Hint: Since

$$
\operatorname{null}(A)=\{\mathrm{x}: A \mathrm{x}=0\}
$$

Exercise: Find a basis for the null space of

$$
A=\left[\begin{array}{ccccc}
1 & 4 & 5 & 6 & 9 \\
3 & -2 & 1 & 4 & -1 \\
-1 & 0 & -1 & -2 & -1 \\
2 & 3 & 5 & 7 & 8
\end{array}\right]
$$

Hint: Since

$$
\operatorname{null}(A)=\{\mathbf{x}: A \mathbf{x}=0\}
$$

On solving right hand side with the above matrix A, we get

$$
\begin{aligned}
\operatorname{null}(A) & =\{(-r-2 s-t,-r-s-2 t, r, s, t): r, s, t \in \mathbb{R}\} \\
& =\operatorname{span}(S), \text { where }
\end{aligned}
$$

$$
S=\{(-1,-1,1,0,0),(-2,-1,0,1,0),(-1,-2,0,0,1)\}
$$

$$
\begin{aligned}
\operatorname{null}(A) & =\{(-r-2 s-t,-r-s-2 t, r, s, t): r, s, t \in \mathbb{R}\} \\
& =\operatorname{span}(S), \text { where }
\end{aligned}
$$

$$
S=\{(-1,-1,1,0,0),(-2,-1,0,1,0),(-1,-2,0,0,1)\}
$$

Also, show that S is linearly independent.

$$
\begin{aligned}
\operatorname{null}(A) & =\{(-r-2 s-t,-r-s-2 t, r, s, t): r, s, t \in \mathbb{R}\} \\
& =\operatorname{span}(S), \text { where }
\end{aligned}
$$

$$
S=\{(-1,-1,1,0,0),(-2,-1,0,1,0),(-1,-2,0,0,1)\}
$$

Also, show that S is linearly independent. Thus S is a basis for null (A).

$$
\begin{aligned}
\operatorname{null}(A) & =\{(-r-2 s-t,-r-s-2 t, r, s, t): r, s, t \in \mathbb{R}\} \\
& =\operatorname{span}(S), \text { where }
\end{aligned}
$$

$S=\{(-1,-1,1,0,0),(-2,-1,0,1,0),(-1,-2,0,0,1)\}$
Also, show that S is linearly independent. Thus S is a basis for $\operatorname{null}(A)$. Hence, $\operatorname{dim}(\operatorname{null}(A))=3$.

Theorem: If a matrix R is in row echelon form, then the row vector with the leading 1's (the nonzero row vectors) form a basis for the row space of R,

Theorem: If a matrix R is in row echelon form, then the row vector with the leading 1's (the nonzero row vectors) form a basis for the row space of R, and the column vectors with the leading 1's of the row vector form a basis for the column space of R.

Exercise: Find a basis for the row space and column space of

$$
A=\left[\begin{array}{cccc}
1 & -3 & 2 & 4 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Exercise: Find a basis for the row space and column space of

$$
A=\left[\begin{array}{cccc}
1 & -3 & 2 & 4 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Solution: Since given matrix is in row echelon form. By Theorem, the set of row vectors

$$
\{(1,-3,2,4),(0,1,-1,0),(0,0,1,3),(0,0,0,1)\}
$$

forms a basis of row (A), and the vectors

$$
\mathbf{c}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right], \mathbf{c}_{3}=\left[\begin{array}{c}
2 \\
-1 \\
1 \\
0
\end{array}\right], \mathbf{c}_{4}=\left[\begin{array}{l}
4 \\
0 \\
3 \\
1
\end{array}\right]
$$

form a basis of $\operatorname{col}(A)$.

Lecture 9

Exercise: Find a basis for the row space

$$
A=\left[\begin{array}{ccccc}
1 & 4 & 5 & 6 & 9 \\
3 & -2 & 1 & 4 & -1 \\
-1 & 0 & -1 & -2 & -1 \\
2 & 3 & 5 & 7 & 8
\end{array}\right]
$$

Exercise: Find a basis for the row space

$$
A=\left[\begin{array}{ccccc}
1 & 4 & 5 & 6 & 9 \\
3 & -2 & 1 & 4 & -1 \\
-1 & 0 & -1 & -2 & -1 \\
2 & 3 & 5 & 7 & 8
\end{array}\right]
$$

Solution: Let B be the RREF of the given matrix. Then find that

$$
B=\left[\begin{array}{lllll}
1 & 0 & 1 & 2 & 1 \\
0 & 1 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Since B is row equivalent to A, we have

$$
\operatorname{row}(B)=\operatorname{row}(A) .
$$

Since B is row equivalent to A, we have

$$
\operatorname{row}(B)=\operatorname{row}(A)
$$

Thus, By Theorem, the set of row vectors

$$
\{(1,0,1,2,1),(0,1,1,1,2)\}
$$

is a basis of $\operatorname{row}(A)$.

Example: Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$, where

$$
\begin{aligned}
\mathbf{v}_{1}=(1,2,3,-1,0), \mathbf{v}_{2} & =(3,6,8,-2,0) \\
\mathbf{v}_{3}=(-1,-1,-3,1,1), \mathbf{v}_{4} & =(-2,-3,-5,1,1)
\end{aligned}
$$

be a subset of \mathbb{R}^{5}.

Example: Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$, where

$$
\begin{aligned}
\mathbf{v}_{1}=(1,2,3,-1,0), \mathbf{v}_{2} & =(3,6,8,-2,0) \\
\mathbf{v}_{3}=(-1,-1,-3,1,1), \mathbf{v}_{4} & =(-2,-3,-5,1,1)
\end{aligned}
$$

be a subset of \mathbb{R}^{5}. Find a basis for $\operatorname{span}(S)$.

Example: Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$, where

$$
\begin{aligned}
\mathbf{v}_{1}=(1,2,3,-1,0), \mathbf{v}_{2} & =(3,6,8,-2,0) \\
\mathbf{v}_{3}=(-1,-1,-3,1,1), \mathbf{v}_{4} & =(-2,-3,-5,1,1)
\end{aligned}
$$

be a subset of \mathbb{R}^{5}. Find a basis for $\operatorname{span}(S)$.

Solution:

Example: Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$, where

$$
\begin{gathered}
\mathbf{v}_{1}=(1,2,3,-1,0), \mathbf{v}_{2}=(3,6,8,-2,0) \\
\mathbf{v}_{3}=(-1,-1,-3,1,1), \mathbf{v}_{4}=(-2,-3,-5,1,1)
\end{gathered}
$$

be a subset of \mathbb{R}^{5}. Find a basis for $\operatorname{span}(S)$.
Solution:
Step 1:

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 3 & -1 & 0 \\
3 & 6 & 8 & -2 & 0 \\
-1 & -1 & -3 & 1 & 1 \\
-2 & -3 & -5 & 1 & 1
\end{array}\right]
$$

Step 2:

$\operatorname{RREF}(A)=\left[\begin{array}{ccccc}1 & 0 & 0 & 2 & -2 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Step 2:

$$
\operatorname{RREF}(A)=\left[\begin{array}{ccccc}
1 & 0 & 0 & 2 & -2 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Step 3:

$$
B=\{(1,0,0,2,-2),(0,1,0,0,1),(0,0,1,-1,0)\}
$$

is a basis for span (S).

Theorem: If A and B are row equivalent matrices, then:

- A given set of column vectors of A forms a basis for the column space of A if and only if the corresponding column vectors of B forms a basis for the column space of B.

Exercise: Find a basis for the column space

$$
A=\left[\begin{array}{ccccc}
1 & 4 & 5 & 6 & 9 \\
3 & -2 & 1 & 4 & -1 \\
-1 & 0 & -1 & -2 & -1 \\
2 & 3 & 5 & 7 & 8
\end{array}\right]
$$

Exercise: Find a basis for the column space

$$
A=\left[\begin{array}{ccccc}
1 & 4 & 5 & 6 & 9 \\
3 & -2 & 1 & 4 & -1 \\
-1 & 0 & -1 & -2 & -1 \\
2 & 3 & 5 & 7 & 8
\end{array}\right]
$$

Solution: Let B be the RREF of the given matrix. Then find that

$$
B=\left[\begin{array}{lllll}
1 & 0 & 1 & 2 & 1 \\
0 & 1 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Since First and second column vector of B is a basis for the $\operatorname{col}(B)$ (Why?).

Since First and second column vector of B is a basis for the $\operatorname{col}(B)$ (Why?). By Theorem 4.7.6, the set of column vectors

$$
\{(1,3,-1,2),(4,-2,0,3)\}
$$

is a basis of $\operatorname{col}(A)$.

Example: Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\}$, where

$$
\begin{gathered}
\mathbf{v}_{1}=(1,2,-2,1), \quad \mathbf{v}_{2}=(-3,0,-4,3) \\
\mathbf{v}_{3}=(2,1,1,-1), \quad \mathbf{v}_{4}=(-3,3,-9,6) \\
\quad \text { and } \mathbf{v}_{5}=(9,3,7,-6)
\end{gathered}
$$

be a subset of \mathbb{R}^{4}.

Example: Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\}$, where

$$
\begin{gathered}
\mathbf{v}_{1}=(1,2,-2,1), \quad \mathbf{v}_{2}=(-3,0,-4,3) \\
\mathbf{v}_{3}=(2,1,1,-1), \quad \mathbf{v}_{4}=(-3,3,-9,6) \\
\quad \text { and } \mathbf{v}_{5}=(9,3,7,-6)
\end{gathered}
$$

be a subset of \mathbb{R}^{4}. Find a basis for $\operatorname{span}(S)$ consisting all the vectors from S.

Example: Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\}$, where

$$
\begin{gathered}
\mathbf{v}_{1}=(1,2,-2,1), \quad \mathbf{v}_{2}=(-3,0,-4,3) \\
\mathbf{v}_{3}=(2,1,1,-1), \quad \mathbf{v}_{4}=(-3,3,-9,6) \\
\quad \text { and } \mathbf{v}_{5}=(9,3,7,-6)
\end{gathered}
$$

be a subset of \mathbb{R}^{4}. Find a basis for $\operatorname{span}(S)$ consisting all the vectors from S.

Solution:

$$
A=\left[\begin{array}{ccccc}
1 & -3 & 2 & -3 & 9 \\
2 & 0 & 1 & 3 & 3 \\
-2 & -4 & 1 & -9 & 7 \\
1 & 3 & -1 & 6 & -6
\end{array}\right]
$$

$$
\operatorname{RREF}(A)=\left[\begin{array}{ccccc}
1 & 0 & 1 / 2 & 3 / 2 & 3 / 2 \\
0 & 1 & -1 / 2 & 3 / 2 & -5 / 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\operatorname{RREF}(A)=\left[\begin{array}{ccccc}
1 & 0 & 1 / 2 & 3 / 2 & 3 / 2 \\
0 & 1 & -1 / 2 & 3 / 2 & -5 / 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The set of vectors corresponding to pivot columns is

$$
B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\{(1,2,-2,1),(-3,0,-4,3)\}
$$

$$
\operatorname{RREF}(A)=\left[\begin{array}{ccccc}
1 & 0 & 1 / 2 & 3 / 2 & 3 / 2 \\
0 & 1 & -1 / 2 & 3 / 2 & -5 / 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The set of vectors corresponding to pivot columns is

$$
B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\{(1,2,-2,1),(-3,0,-4,3)\}
$$

forms a basis for the subspace span (S).

Lecture 10

Rank and Nullity of a Matrix

Rank and Nullity of a Matrix

Theorem: The row space and column space of a matrix have the same dimension.

Rank and Nullity of a Matrix

Theorem: The row space and column space of a matrix have the same dimension.

Definition: The common dimension of $\operatorname{row}(A)$ and $\operatorname{col}(A)$ of a matrix A is called the rank of A and is denoted by rank (A);

Rank and Nullity of a Matrix

Theorem: The row space and column space of a matrix have the same dimension.

Definition: The common dimension of $\operatorname{row}(A)$ and $\operatorname{col}(A)$ of a matrix A is called the rank of A and is denoted by $\operatorname{rank}(A)$;

- $\operatorname{dim}(\operatorname{null}(A))$ is called the nullity of A and it is denoted by nullity (A).

Result: For any matrix A,

 $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.
Exercise: Find the rank and nullity of the matrix

$$
A=\left[\begin{array}{cccc}
1 & 3 & 1 & 4 \\
2 & 4 & 2 & 0 \\
-1 & -3 & 0 & 5
\end{array}\right]
$$

Theorem (Dimension Theorem for Matrices): If A

 is a matrix with n columns, then$\operatorname{rank}(A)+\operatorname{nullity}(A)=n$

Theorem: Let A be an $n \times n$ matrix. The following statements are equivalent:

- A is invertible.
- $A \mathbf{x}=\mathbf{b}$ has a unique solution for every $\mathbf{b} \in \mathbb{R}^{n}$.
- The homogenous system $A \mathbf{x}=0$ has only the trivial solution.
- The reduced row echelon form of A is I_{n}.
- A is expressible as a product of elementary matrices.
- $\operatorname{det}(A) \neq 0$.
- The column vectors of A are linearly independent.
- The column vectors of A span \mathbb{R}^{n}.

Theorem: (contd.)

- The column vectors of A form a basis of \mathbb{R}^{n}.
- The row vectors of A are linearly independent.
- The row vectors of A span \mathbb{R}^{n}.
- The row vectors of A form a basis of \mathbb{R}^{n}.
- A has rank n.
- A has nullity 0 .

(Conclusion)

(1) Real Vector Spaces
(2) Subspaces
(3) Span

4 Linear Independence
(5) Basis and Dimension
(6) Row space, Column Space, and Null Space
(7) Rank and Nullity of a Matrix

Thank You

