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Vector Space: Let V be an arbitrary nonempty set
of objects, together with two operations namely
addition (denoted as ⊕) and scalar
multiplication(denoted as �), is said to be a (real)
vector space if for every u,v,w in V and for every
a, b ∈ R the following properties hold:

1 u⊕ v ∈ V (Closed under vector addition)

2 u⊕ v = v⊕ u (Commutativity)

3 (u⊕ v)⊕w = u⊕ (v⊕w) (Associativity)

4 There exists an element 0 ∈ V , called a zero
vector, such that u⊕ 0 = u (Existence of
additive identity)
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5 For each u ∈ V , there is an element −u ∈ V
such that u⊕ (−u) = 0 (Existence of additive
inverse)

6 a� u ∈ V (Closed under scalar multiplication)

7 a� (u⊕ v) = (a� u)⊕ (a� v) (Distributivity)

8 (a+ b)� u = a� u⊕ b� u (Distributivity)

9 (ab)� u = a� (b� u)

10 1� u = u.

The objects of a vector space V are called vectors.
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Note that the set V = {0} is a vector space with
respect to

vector addition 0⊕ 0 = 0
scalar multiplication a� 0 = 0 for all a ∈ R

The vector space V = {0} is called the zero (trivial)
vector space.
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Example 1: The set R of real numbers is a vector
space with respect to the following operations:

u⊕ v = u + v (vector addition)

a� u = au (scalar multiplication)
for all a,u,v ∈ R.

Question: Does the set R+ of positive real numbers
form a vector space under the above defined vector
addition ⊕ and scalar multiplication �?
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Example 2: The set R+ of a positive real numbers is
a vector space with respect to the following
operations:

u⊕ v = u · v (vector addition)

a� u = ua (scalar multiplication)
for all a ∈ R and u,v ∈ R+.
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Example 3: The set R2 = {(x1, x2) | x1, x2 ∈ R} is a
vector space with respect to the following vector
addition ⊕ and scalar multiplication �:

(x1, x2)⊕ (y1, y2) = (x1 + y1, x2 + y2)

a� (x1, x2) = (ax1, ax2)

for all a ∈ R and (x1, x2), (y1, y2) ∈ R2.

Question: Does R2 form a vector space under the
above defined vector addition and the following
scalar multiplication

a� (x1, x2) = (0, ax2)

for all a ∈ R and (x1, x2) ∈ R2.
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Soln. of Example 3: Let u = (x1, x2), v = (y1, y2)
and w = (z1, z2) ∈ R2 and a, b ∈ R.

1 Closure Property:
u⊕ v

= (x1, x2)⊕ (y1, y2) = (x1 + y1, x2 + y2)∈ R2.
2 Commutative Property:

u⊕ v = (x1 + y1, x2 + y2) = (y1 + x1, y2 + x2)
(commutativity of R under addition)

= (y1, y2)⊕ (x1, x2)
= v⊕ u

3 Associative Property:
(u⊕ v)⊕w = ((x1 + y1) + z1, (x2 + y2) + z2)

= (x1 + (y1 + z1), x2 + (y2 + z2))
(associativity of R under addition)
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= (x1, x2)⊕ (y1 + z1, y2 + z2)

= (x1, x2)⊕ ((y1, y2)⊕ (z1, z2))
= u⊕ (v⊕w)

4 Existence of additive identity (zero vector): For
any u = (x1, x2) ∈ R2 there exists 0 = (0, 0) ∈ R2

such that
u ⊕ 0 = (x1, x2)⊕ (0, 0) = (x1 + 0, x2 + 0)

= (x1, x2)
= u

5 Existence of additive inverse: For each
u = (x1, x2) ∈ R2 there exists −u = (−x1,−x2) in
R2 such that
u⊕ (−u) = (x1, x2)⊕ (−x1,−x2)

= (x1 + (−x1), x2 + (−x2)) = (0, 0) = 0
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6 Closure Property of scalar multiplication:

a� u = a� (x1, x2) = (ax1, ax2)∈ R2. Thus, R2 is
closed under scalar multiplication.

7 Distributivity over vector addition:
a� (u⊕ v) = a� ((x1, x2)⊕ (y1, y2))

= a� (x1 + y1, x2 + y2)
= (a(x1 + y1), a(x2 + y2))

= (ax1+ ay1, ax2+ ay2) (distributivity in R)
= (ax1, ax2)⊕ (ay1, ay2)
= (a� (x1, x2))⊕ (a� (y1, y2))
= (a� u)⊕ (a� v)
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8 Distributivity over scalar addition:

(a+ b)� u = (a+ b)� (x1, x2)
= ((a+ b)x1, (a+ b)x2)

= (ax1 + bx1, ax2 + bx2) (distributivity in R)
= (ax1, ax2)⊕ (bx1, bx2)
= (a� (x1, x2))⊕ (b� (x1, x2))
= (a� u)⊕ (b� u)

9 (ab)� u = (ab)� (x1, x2)
= ((ab)x1, (ab)x2)
= (a(bx1), a(bx2))

(associativity of R under multiplication)
= a� (bx1, bx2)
= a� (b� (x1, x2))
= a� (b� u)
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10 1� u =

1� (x1, x2) = (1x1, 1x2) = (x1, x2) = u.

Thus R2 is vector space under usual vector addition
and scalar multiplication.
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Exercise: Show that the set

R2 = {(x1, x2) | x1, x2 ∈ R}

is a vector space with respect to the following vector
addition ⊕ and scalar multiplication �:

(x1, x2)⊕ (y1, y2) = (x1 + y1 + 1, x2 + y2 − 2)

a� (x1, x2) = (ax1 + a− 1, ax2 − 2a+ 2)
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Example 4: Consider the set

Rn = {(x1, x2, . . . , xn) : xi ∈ R}.

For any u,v ∈ Rn and a ∈ R, define

u⊕ v = (x1, x2, . . . , xn)⊕ (y1, y2, . . . , yn)

= (x1 + y1, x2 + y2, . . . , xn + yn)

a� u = (ax1, ax2, . . . , axn).

Then Rn is a vector space with respect to ⊕ and �.
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Example 5: The set

Mmn = {[aij]m×n | aij ∈ R}

of all m× n matrices with real entries

is a vector
space with respect to the following operations:

[aij]m×n ⊕ [bij]m×n = [aij + bij]m×n (vector addition)

a� [aij]m×n = [aaij]m×n (scalar multiplication)

for all a ∈ R and [aij]m×n, [bij]m×n ∈Mmn.
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Theorem 4.1.1: Let V be a vector space. Then for
every u ∈ V and k ∈ R, we have

k0V = 0V

0u = 0V

(−1)u = −u
If ku = 0V , then k = 0 or u = 0V .
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Lecture 2
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Subspaces

Definition: A nonempty subset W of a vector space
V is said to be a subspace of V if W is itself a vector
space with respect to the same operations (vector
addition and scalar multiplication) of V .

Note that every vector space V has at least two
subspaces: {0} and V itself. The subspace {0} is
known as zero (trivial) subspace.
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Example: The set

W =
{
(x, y) ∈ R2 | y = 0

}
forms a vector space with respect to usual vector
addition and scalar multiplication in R2.

Thus, W is a
subspace of R2.

Question: Does the set

W =
{
(x, y) ∈ R2 | x 6= y

}
form a subspace of R2?
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Theorem: A nonempty subset W of a vector space
V is a subspace of V if and only if the following
conditions hold:

If u and v are vectors in W , then u + v is in W .
If k is a scalar and u is a vector in W , then ku is
in W .

In words, A nonempty subset W of a vector space
V is a subspace of V if and only if W is closed under
vector addition and scalar multiplication.

Remark: If W is a subspace of a vector space V ,
then 0 ∈ W .
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Exercise: Examine whether the following sets are
subspaces of the vector space R3.

W1 =
{
(x, y, z) ∈ R3 | x ≥ 0

}
.

W2 =
{
(x, y, z) ∈ R3 | x+ y + z = 0

}
.

W3 =
{
(x, y, z) ∈ R3 | x = y2

}
.

W4 =
{
(x, y, z) ∈ R3 | x+ y + z = 2

}
.

W5 =
{
(x, y, z) ∈ R3 | x2 + y2 + z2 = 1

}
.
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Exercise: Examine whether the following sets are
subspaces of the vector space M22

W1 = {A ∈M22 | A is singular}.

W2 = {A ∈M22 | A is nonsingular}.

W4 = {A ∈M22 | A is symmetric}.

W5 =
{
A ∈M22 | A2 = A

}
.
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Results: Let W1 and W2 be two subspaces of vector
space V . Then

their intersection i.e. W1 ∩W2 is a subspace of
V .
their union W1 ∪W2 need not be a subspace of
V .
W1 ∪W2 is subspace of V if and only if either
W1 ⊂ W2 or W2 ⊂ W1.
their sum, defined as

W1 +W2 = {w1 + w2 | w1 ∈ W1, w2 ∈ W2},

is a subspace of V .
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Lecture 3
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Linear combination: Let V be a vector space and
v1,v2, . . . ,vr ∈ V . Then a vector w ∈ V is said to be
a linear combination of v1,v2, . . . ,vr if

w = k1v1 + k2v2 + · · ·+ krvr; ki(1 ≤ i ≤ r) ∈ R

Example: The vector (3, 4) is a linear combination of
(1, 0) and (0, 1) in R2.
Note that

(3, 4) = 2(1, 1) + (1, 2).

Thus, (3, 4) is a linear combination of (1, 1) and (1, 2)
also.
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Span of a set: Let S be a nonempty subset of a
vector space V . Then the span of S is the set of all
possible (finite) linear combinations of the vectors in
S and it is denoted by span(S)

i.e. if
S = {v1,v2, . . . ,vk}, then

span(S) = {a1v1 + · · ·+ akvk | ai ∈ R, 1 ≤ i ≤ k}

For a subset S = {(1, 0), (0, 1)} of R2, we have
span(S) = R2.

For a subset S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of
R3, we have span(S) = R3.

Vikendra Singh Linear Algebra (GE-2) 27 / 93



Span of a set: Let S be a nonempty subset of a
vector space V . Then the span of S is the set of all
possible (finite) linear combinations of the vectors in
S and it is denoted by span(S) i.e. if
S = {v1,v2, . . . ,vk}, then

span(S) = {a1v1 + · · ·+ akvk | ai ∈ R, 1 ≤ i ≤ k}

For a subset S = {(1, 0), (0, 1)} of R2, we have
span(S) = R2.

For a subset S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of
R3, we have span(S) = R3.

Vikendra Singh Linear Algebra (GE-2) 27 / 93



Span of a set: Let S be a nonempty subset of a
vector space V . Then the span of S is the set of all
possible (finite) linear combinations of the vectors in
S and it is denoted by span(S) i.e. if
S = {v1,v2, . . . ,vk}, then

span(S) = {a1v1 + · · ·+ akvk | ai ∈ R, 1 ≤ i ≤ k}

For a subset S = {(1, 0), (0, 1)} of R2, we have
span(S) = R2.

For a subset S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of
R3, we have span(S) = R3.

Vikendra Singh Linear Algebra (GE-2) 27 / 93



Span of a set: Let S be a nonempty subset of a
vector space V . Then the span of S is the set of all
possible (finite) linear combinations of the vectors in
S and it is denoted by span(S) i.e. if
S = {v1,v2, . . . ,vk}, then

span(S) = {a1v1 + · · ·+ akvk | ai ∈ R, 1 ≤ i ≤ k}

For a subset S = {(1, 0), (0, 1)} of R2, we have
span(S)

= R2.

For a subset S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of
R3, we have span(S) = R3.

Vikendra Singh Linear Algebra (GE-2) 27 / 93



Span of a set: Let S be a nonempty subset of a
vector space V . Then the span of S is the set of all
possible (finite) linear combinations of the vectors in
S and it is denoted by span(S) i.e. if
S = {v1,v2, . . . ,vk}, then

span(S) = {a1v1 + · · ·+ akvk | ai ∈ R, 1 ≤ i ≤ k}

For a subset S = {(1, 0), (0, 1)} of R2, we have
span(S) = R2.

For a subset S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of
R3, we have span(S) = R3.

Vikendra Singh Linear Algebra (GE-2) 27 / 93



Span of a set: Let S be a nonempty subset of a
vector space V . Then the span of S is the set of all
possible (finite) linear combinations of the vectors in
S and it is denoted by span(S) i.e. if
S = {v1,v2, . . . ,vk}, then

span(S) = {a1v1 + · · ·+ akvk | ai ∈ R, 1 ≤ i ≤ k}

For a subset S = {(1, 0), (0, 1)} of R2, we have
span(S) = R2.

For a subset S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of
R3, we have span(S)

= R3.

Vikendra Singh Linear Algebra (GE-2) 27 / 93



Span of a set: Let S be a nonempty subset of a
vector space V . Then the span of S is the set of all
possible (finite) linear combinations of the vectors in
S and it is denoted by span(S) i.e. if
S = {v1,v2, . . . ,vk}, then

span(S) = {a1v1 + · · ·+ akvk | ai ∈ R, 1 ≤ i ≤ k}

For a subset S = {(1, 0), (0, 1)} of R2, we have
span(S) = R2.

For a subset S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of
R3, we have span(S) = R3.

Vikendra Singh Linear Algebra (GE-2) 27 / 93



Exercise: Let V = R3 and S = {(1, 0, 0), (0, 1, 0)}.
Find span(S).
Do (3, 2, 0) and (2, 5, 1) belong to span(S)?

Solution:

span(S) = {a(1, 0, 0) + b(0, 1, 0) | a, b ∈ R}
= {(a, b, 0) | a, b ∈ R}

Clearly, (3, 2, 0) ∈ span(S) but (2, 5, 1) 6∈ span(S).

In this exercise note that span(S) is a subspace of
R3.
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Exercise: Let v1,v2 be in a vector space V . Then
show that W = span{v1,v2} is a subspace of V .

Theorem Let S = {v1,v2, . . . ,vr} be a nonempty
subset of a vector space V . Then

span(S) is a subspace of V .
span(S) is the smallest subspace of V
containing S.

Convention: span(∅) = {0}.
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Exercise: Determine whether the vectors
v1 = (1, 2, 3),v2 = (2, 0, 0) and v3 = (−2, 1, 0) span
the vector space R3.

Solution: Let S = {v1,v2,v3}. Clearly, by definition
of span(S), we have span(S) ⊆ R3. In order to check
span(S) = R3, we have to check whether R3 is
subset of span(S) or not.

Let (a, b, c) be an arbitrary element of R3. We must
check whether (a, b, c) belongs to span(S) or not i.e.
whether there exists k1, k2, k3 ∈ R such that

(a, b, c) = k1(1, 2, 3) + k2(2, 0, 0) + k3(−2,−1, 0)
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This is equivalent to check whether the system of
equations

k1 + 2k2 − 2k3 = a

2k1 − k3 = b

3k1 = c

is consistent for any a, b, c ∈ R.

Note that the reduced row echelon form of the
coefficient matrix 1 2 −2

2 0 −1
3 0 0

 is

 1 0 0
0 1 0
0 0 1


implies that the coefficient matrix of above system is
invertible.
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Thus, the above system is consistent for any
a, b, c ∈ R. Hence, span(S) = R3.

Exercise Determine whether the vectors
v1 = (3, 2, 4),v2 = (−3,−1, 0),v3 = (0, 1, 4) and
v4 = (0, 2, 8) span the vector space R3.

Hint: By the similar argument, used in previous
exercise, one should check whether the system of
equations

Vikendra Singh Linear Algebra (GE-2) 32 / 93



Thus, the above system is consistent for any
a, b, c ∈ R. Hence, span(S) = R3.

Exercise Determine whether the vectors
v1 = (3, 2, 4),v2 = (−3,−1, 0),v3 = (0, 1, 4) and
v4 = (0, 2, 8) span the vector space R3.

Hint: By the similar argument, used in previous
exercise, one should check whether the system of
equations

Vikendra Singh Linear Algebra (GE-2) 32 / 93



Thus, the above system is consistent for any
a, b, c ∈ R. Hence, span(S) = R3.

Exercise Determine whether the vectors
v1 = (3, 2, 4),v2 = (−3,−1, 0),v3 = (0, 1, 4) and
v4 = (0, 2, 8) span the vector space R3.

Hint: By the similar argument, used in previous
exercise, one should check whether the system of
equations

Vikendra Singh Linear Algebra (GE-2) 32 / 93



3k1 − 3k2 = a

2k1 − k2 + k3 + 2k4 = b

4k1 + 4k3 + 8k4 = c

is consistent for any a, b, c ∈ R.

Now show that the reduced row echelon form of the
augmented matrix 3 −3 0 0 a

2 −1 1 2 b
4 0 4 8 c

 is

 1 0 1 2 b− a
3

0 1 1 2 b− 2a
3

0 0 0 0 4a− 12b+ 3c
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Since the system is not consistent for all choices of
(a, b, c) ∈ R3. Hence, span(S) 6= R3.

Note that the vector (0, 0, 1) ∈ R3 but it is not in
span(S).
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Lecture 4
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Linear Independence

Definition: A subset S = {v1,v2, . . . ,vn} of a vector
space V is said to be linearly dependent (LD) if there
exist real numbers a1, a2, . . . , an not all zero such that

a1v1 + a2v2 + · · ·+ anvn = 0.

S is linearly independent (LI) if it is not linearly
dependent i.e. if

a1v1 + a2v2 + · · ·+ anvn = 0

Then
a1 = a2 = · · · = an = 0.
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Examples

The subset S = {(1, 0), (0, 1)} of R2 is

linearly
independent.
The subset S = {(1, 2), (5, 10)} of R2 is linearly
dependent.
The subset S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of R3

is linearly independent.
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The singleton set containing 0 ∈ V i.e. {0}

is
LD.
For v 6= 0 of V , the set {v} is LI.
Any set containing zero vector is LD.
Let S = {v1,v2} be a set of nonzero vectors of
V . Then S is linearly dependent iff one vector is
a scalar multiple of the other.
Let S be a finite set of nonzero vectors having at
least two elements. Then S is LD if and only if
some vector in S can be expressed as a linear
combination of the other vectors in S.
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Example: Show that

S = {(3, 1,−1), (−5,−2, 2), (2, 2,−1)}

is linearly independent subset of R3.

Solution: Let a, b, c ∈ R such that

a(3, 1,−1) + b(−5,−2, 2) + c(2, 2,−1) = 0

(3a, a,−a) + (−5b,−2b, 2b) + (2c, 2c,−c) = (0, 0, 0)

(3a− 5b+ 2c, a− 2b+ 2c,−a+ 2b− c) = (0, 0, 0)
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To find a, b, c ∈ R, we need to solve the following
homogenous system:

3a− 5b+ 2c = 0

a− 2b+ 2c = 0

−a+ 2b− c = 0

To solve above homogenous system, write
augmented matrix

[A 0] =

 3 −5 2 0
1 −2 2 0
−1 2 −1 0
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reduced row echelon form of [A 0] is 1 0 0 0
0 1 0 0
0 0 1 0


Thus, we have a = 0, b = 0, c = 0.

Hence, S is
linearly independent subset of R3.
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Exercise: For a given vector space V and a given
subset S of V , check the linear independence of S in
the following:

1 V = P2, S = {(x− 2)2, x2 − 4x, 12}.

2 V = P2, S = {1 + x, x+ x2, 1 + x2}.
3 V = Pn, S = {1, x, x2, . . . , xn}.

4 V = M22, S =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.
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Theorem: If S is any subset of Rn containing r
distinct vectors, where r > n, then S is linearly
dependent.

Exercise: Examine the linear independence of a
subset S = {(2,−5, 1), (1, 1,−1), (0, 2,−3), (2, 2, 6)}
of R3.
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Lecture 5
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Coordinates and Basis

Definition: A finite subset S = {v1,v2, . . . ,vn} of a
vector space V is said to be a basis of V if

1 S is LI, and
2 span(S) = V .
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Examples

The subset S = {(1, 0), (0, 1)} = {e1, e2} is a
basis of R2 as B is LI and span(S) = R2.

The
subset S is called the standard basis of R2.
The subset S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, also
denoted by {e1, e2, e3}, is a basis of R3 as it is LI
and span(S) = R3. The subset S is called the
standard basis of R3.

Analogously, S = {e1, e2, . . . , en} be a standard basis
of Rn, where ei is a vector of Rn such that its ith

component is 1 and remaining components are 0.
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Think about some more basis of R2 and R3.

Exercise: Examine whether the subset
S = {(4, 1), (−7,−8)} is a basis of R2?.

Example: Show that the vectors v1 = (1, 2, 1),
v2 = (2, 9, 0) and v3 = (3, 3, 4) form a basis of R3.
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The subset S = {1, x, x2, . . . , xn} is a basis of Pn

as S is LI (verify!) and span(S) = Pn (verify!).

The set S is called the standard basis of Pn.

The subset

S =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
is a basis of M22. The set S is called the
standard basis of M22.

Verify that S is LI and span(S) = M22.
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Theorem: If S = {v1,v2, . . . ,vn} is a basis for a
vector space V , then every vector v in V can be
expressed in the form v = c1v1 + c2v2 + · · ·+ cnvn in
exactly one way.

Definition: If S = {v1,v2, . . . ,vn} is a basis for a
vector space V , and

v = c1v1 + c2v2 + · · ·+ cnvn

then the scalars c1, c2, . . . , cn are called coordinates
of v relative to the basis S.
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The vector (c1, c2, . . . , cn) ∈ Rn constructed from
these coordinates is called the coordinate vector of
v relative to S; it is denoted by

(v)S = (c1, c2, . . . , cn)

Remark: Sometime we shall write a coordinate
vector as column matrix and in that case it will be
denoted by [v]S i.e.

[v]S =


c1
c2
...
cn
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Exercise: Find the coordinate vector of the
polynomial p = 3− x− 2x2 relative to the basis
S = {1 + x, 1 + x2, x+ x2}.

Solution: Consider

3− x− 2x2 = c1(1 + x) + c2(1 + x2) + c3(x+ x2)

= (c1 + c2) + (c1 + c3)x+ (c2 + c3)x
2

This leads to solve the system of equations

c1 + c2 = 3

c1 + c3 = −1
c2 + c3 = −2
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On solving, we get c1 = 2, c2 = 1, c3 = −3.

Thus,

(p)S = (2, 1,−3).
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On solving, we get c1 = 2, c2 = 1, c3 = −3. Thus,

(p)S = (2, 1,−3).
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Lecture 6
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Definition: A vector space that can be spanned by
finitely many vectors is said be finite dimensional.
Otherwise, it is called infinite dimensional.

Example: The vector spaces Rn, Pn and Mmn are
finite dimensional, whereas the vector space P∞ is
infinite dimensional.
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Theorem: Let V be a finite dimensional vector
space, and let {v1,v2, . . . ,vn} be any basis

If a set has more than n vectors, then it is
linearly dependent.
If a set has fewer than n vectors, then it does not
span V .

Theorem: All bases for a finite dimensional vector
space have the same number of elements.
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Definition: The dimension of a finite dimensional
vector space V is the number of elements in a basis
of V

and it is denoted by dim(V ).

The dimension of the zero vector space {0} is
defined to be zero.
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Examples

dim(R2) = 2.

dim(R3) = 3.
dim(Rn) = n.
dim(Pn) = n+ 1.
dim(Mmn) = mn.
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Theorem: Let S be a nonempty set of vectors in a
vector space V .

If S is a linearly independent and v ∈ V such
that v 6∈ span(S), then S1 = S ∪ {v} is a linearly
independent set.

If v ∈ S such that it can be expressible as a
linear combination of other vectors in S, then

span(S) = span(S − {v}).
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Theorem: Let V be an n-dimensional vector space,
and let S be a set in V with exactly n vectors.

S is a basis of V if and only if S spans V .

S is a basis of V if and only if S is linearly
independent.
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Exercise: For a given vector space V and a given
subset S of V , determine which of following S form a
basis of the respective vector space V :

1 V = R3, S = {(3, 1,−1), (−5,−2, 2), (2, 2,−1)}.
2 V = R4, S = {(7, 1, 2, 0), (8, 0, 1,−1)}.
3 V = P2, S = {1 + x, x+ x2, 1 + x2}.
4 V = P2, S = {1− x, x− x2, 1− x2}.
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Lecture 7
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Example: Find a basis and the dimension of a
subspace W of R3, where

W = {(x, y, z) ∈ R3 | x+ 2z = 0}.

Solution: The general solution of the equation
x+ 2z = 0 is given by {(−2s, t, s) | t, s ∈ R}. Thus

W = {(−2s, t, s) | t, s ∈ R}
W = {s(−2, 0, 1) + t(0, 1, 0) | t, s ∈ R}
W = span ({(−2, 0, 1), (0, 1, 0)}) .

Note that the set {(−2, 0, 1), (0, 1, 0)} is linearly
independent (show it).
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Hence, the subset {(−2, 0, 1), (0, 1, 0)} is a basis of
W and dim(W ) = 2.

Exercise: Find a basis and the dimension of a
subspace W of P3, where

W = {p ∈ P3 | p(2) = 0}.
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Exercise: Find a basis for the solution space of the
following homogenous linear system

x+ 2y − z = 0

2x− y + 2z = 0

3x+ y + z = 0

4x+ 3y = 0

Hence, find the dimension of the solution space.

Hint: First find the solution set S of given
homogenous system of equations

and observe that

S =

{
t

(
−3
5
,
4

5
, 1

)
: t ∈ R

}
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S = span
{(
−3
5
,
4

5
, 1

)}
and

{(−35 ,
4
5 , 1)} is LI (why?). Thus, {(−35 ,

4
5 , 1)} forms

a basis of solution space and dim(S) = 1.
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Exercise: Let S = {(4, 2, 1), (2, 6,−5), (1,−2, 3)} be
a subset of vector space R3.

Examine the linear independence of S.

Find dim(span(S)).

Hint:
Let

a1(4, 2, 1)+a2(2, 6,−5)+a3(1,−2, 3) = 0 = (0, 0, 0)

On solving above system of equations, we get

a1 = −1, a2 = 1, a3 = 2

implies S is not LI.
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Note that

(2, 6,−5) = (4, 2, 1)− 2(1,−2, 3)

implies span(S) = span(S ′), where

S ′ = {(4, 2, 1), (1,−2, 3)}.

Now, note that S ′ is LI (Show it).

Thus S ′ (a set of
two elements) is a basis of span(S) and

dim(span(S)) = 2.
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Theorem: Let W be a subspace of a finite
dimensional vector space V . Then

W is also finite dimensional and dimW ≤ dimV .
dimW = dimV if and only if W = V .
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Lecture 8
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Subspaces associated with Matrices

Definition Let A be an m× n matrix.
The row space of A is the subspace row(A) of
Rn spanned by the row vectors of A.
The column space of A is the subspace col(A)
of Rm spanned by the column vectors of A.
The null space of A is the subspace of Rn

consisting of solutions of the homogenous linear
system Ax = 0. It is denoted by null(A).
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Exercise: Find a basis for the null space of

A =


1 4 5 6 9
3 −2 1 4 −1
−1 0 −1 −2 −1
2 3 5 7 8



Hint: Since

null(A) = {x : Ax = 0}

On solving right hand side with the above matrix A,
we get
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null(A) = {(−r − 2s− t,−r − s− 2t, r, s, t) : r, s, t ∈ R}
= span(S),where

S = {(−1,−1, 1, 0, 0), (−2,−1, 0, 1, 0), (−1,−2, 0, 0, 1)}

Also, show that S is linearly independent. Thus S is
a basis for null(A). Hence, dim(null(A)) = 3.

Vikendra Singh Linear Algebra (GE-2) 72 / 93



null(A) = {(−r − 2s− t,−r − s− 2t, r, s, t) : r, s, t ∈ R}
= span(S),where

S = {(−1,−1, 1, 0, 0), (−2,−1, 0, 1, 0), (−1,−2, 0, 0, 1)}
Also, show that S is linearly independent.

Thus S is
a basis for null(A). Hence, dim(null(A)) = 3.

Vikendra Singh Linear Algebra (GE-2) 72 / 93



null(A) = {(−r − 2s− t,−r − s− 2t, r, s, t) : r, s, t ∈ R}
= span(S),where

S = {(−1,−1, 1, 0, 0), (−2,−1, 0, 1, 0), (−1,−2, 0, 0, 1)}
Also, show that S is linearly independent. Thus S is
a basis for null(A).

Hence, dim(null(A)) = 3.

Vikendra Singh Linear Algebra (GE-2) 72 / 93



null(A) = {(−r − 2s− t,−r − s− 2t, r, s, t) : r, s, t ∈ R}
= span(S),where

S = {(−1,−1, 1, 0, 0), (−2,−1, 0, 1, 0), (−1,−2, 0, 0, 1)}
Also, show that S is linearly independent. Thus S is
a basis for null(A). Hence, dim(null(A)) = 3.

Vikendra Singh Linear Algebra (GE-2) 72 / 93



Theorem: If a matrix R is in row echelon form, then
the row vector with the leading 1’s (the nonzero row
vectors) form a basis for the row space of R,

and the
column vectors with the leading 1’s of the row vector
form a basis for the column space of R.
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Exercise: Find a basis for the row space and
column space of

A =


1 −3 2 4
0 1 −1 0
0 0 1 3
0 0 0 1



Solution: Since given matrix is in row echelon form.
By Theorem, the set of row vectors

{(1,−3, 2, 4), (0, 1,−1, 0), (0, 0, 1, 3), (0, 0, 0, 1)}

forms a basis of row(A), and the vectors
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c1 =


1
0
0
0

 ,c2 =


−3
1
0
0

 ,c3 =


2
−1
1
0

 ,c4 =


4
0
3
1


form a basis of col(A).
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Lecture 9
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Exercise: Find a basis for the row space

A =


1 4 5 6 9
3 −2 1 4 −1
−1 0 −1 −2 −1
2 3 5 7 8



Solution: Let B be the RREF of the given matrix.
Then find that

B =


1 0 1 2 1
0 1 1 1 2
0 0 0 0 0
0 0 0 0 0
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Since B is row equivalent to A, we have

row(B) = row(A).

Thus, By Theorem, the set of row vectors

{(1, 0, 1, 2, 1), (0, 1, 1, 1, 2)}

is a basis of row(A).
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Example: Let S = {v1,v2,v3,v4}, where

v1 = (1, 2, 3,−1, 0), v2 = (3, 6, 8,−2, 0)

v3 = (−1,−1,−3, 1, 1), v4 = (−2,−3,−5, 1, 1)
be a subset of R5.

Find a basis for span(S).

Solution:
Step 1:

A =


1 2 3 −1 0
3 6 8 −2 0
−1 −1 −3 1 1
−2 −3 −5 1 1
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3 6 8 −2 0
−1 −1 −3 1 1
−2 −3 −5 1 1
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Step 2:

RREF(A) =


1 0 0 2 −2
0 1 0 0 1
0 0 1 −1 0
0 0 0 0 0



Step 3:

B = {(1, 0, 0, 2,−2), (0, 1, 0, 0, 1), (0, 0, 1,−1, 0)}

is a basis for span(S).
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Step 2:

RREF(A) =
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0 1 0 0 1
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0 0 0 0 0
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Theorem : If A and B are row equivalent matrices,
then:

A given set of column vectors of A forms a basis
for the column space of A if and only if the
corresponding column vectors of B forms a
basis for the column space of B.
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Exercise: Find a basis for the column space

A =


1 4 5 6 9
3 −2 1 4 −1
−1 0 −1 −2 −1
2 3 5 7 8



Solution: Let B be the RREF of the given matrix.
Then find that

B =


1 0 1 2 1
0 1 1 1 2
0 0 0 0 0
0 0 0 0 0
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Since First and second column vector of B is a basis
for the col(B)(Why?).

By Theorem 4.7.6, the set of
column vectors

{(1, 3,−1, 2), (4,−2, 0, 3)}

is a basis of col(A).
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Example: Let S = {v1,v2,v3,v4,v5}, where

v1 = (1, 2,−2, 1), v2 = (−3, 0,−4, 3)
v3 = (2, 1, 1,−1), v4 = (−3, 3,−9, 6)

and v5 = (9, 3, 7,−6)
be a subset of R4.

Find a basis for span(S)
consisting all the vectors from S.

Solution:

A =


1 −3 2 −3 9
2 0 1 3 3
−2 −4 1 −9 7
1 3 −1 6 −6
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RREF(A) =


1 0 1/2 3/2 3/2
0 1 −1/2 3/2 −5/2
0 0 0 0 0
0 0 0 0 0



The set of vectors corresponding to pivot columns is

B = {v1,v2} = {(1, 2,−2, 1), (−3, 0,−4, 3)}

forms a basis for the subspace span(S).
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Lecture 10
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Rank and Nullity of a Matrix

Theorem: The row space and column space of a
matrix have the same dimension.

Definition: The common dimension of row(A) and
col(A) of a matrix A is called the rank of A and is
denoted by rank(A);

dim(null(A)) is called the nullity of A and it is
denoted by nullity(A).
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Result: For any matrix A,

rank(A) = rank(AT ).
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Exercise: Find the rank and nullity of the matrix

A =

 1 3 1 4
2 4 2 0
−1 −3 0 5
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Theorem (Dimension Theorem for Matrices): If A
is a matrix with n columns, then

rank(A) + nullity(A) = n
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Theorem: Let A be an n× n matrix. The following
statements are equivalent:

A is invertible.
Ax = b has a unique solution for every b ∈ Rn.
The homogenous system Ax = 0 has only the
trivial solution.
The reduced row echelon form of A is In.
A is expressible as a product of elementary
matrices.
det(A) 6= 0.
The column vectors of A are linearly
independent.
The column vectors of A span Rn.
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Theorem: (contd.)
The column vectors of A form a basis of Rn.
The row vectors of A are linearly independent.
The row vectors of A span Rn.
The row vectors of A form a basis of Rn.
A has rank n.
A has nullity 0.
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(Conclusion)

1 Real Vector Spaces
2 Subspaces
3 Span
4 Linear Independence
5 Basis and Dimension
6 Row space, Column Space, and Null Space
7 Rank and Nullity of a Matrix
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Thank You
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