Pinus

Source

- A textbook of botany (Singh, Pandey, Jain)
- Botany for degree students (P.C Vashishta)

Dr. Sunita Malik
Deshbandhu College
University of Delhi

PINUS

https://en.wikipedia.org/wiki/Pine

-Plant is sporophyte
-70-200 ft generally
-Pyramid shape
-Divided into: root, stem, leaves
https://en.wikipedia.org/wiki/Pine

2 Kinds of leaves

Needle / Pine or Pinus needle	Scale leaves
Smooth surface	Rough surface
Born on dwarf branches called spur	Born on long and dwarf shoots (both)
Occur in cluster if $1=$ monofoliar 2	
3	
4	
5	
Base of each needle surrounded by thin, dry, membranous sheath	
Persisten=fall only when spur is shedas a whole (pine tree is evergreen)	Fall off as branches mature
	In axil of scale leaves on long shoots, arise

Smalll size of leaf=xerophytic habitat character = slopes winter

Long shoots

Arise in axil of scale leavesa on main trunk

Continue indefinitely by means of apical growth

Covered with brown bud scales
One whorl develops every year, on regular intervals on main trunk

Grows horizontally
Gradually become shorter at apex—pyramid tree

Each year, gives rise to dwarf shoots in axil of brown scale leaves

Older parts have scars left by fallen dwarf shoots

Dwarf shoots

Arise at regular intervals from long branches, in axil of scale leaves
definite growth (ephemeral)

Terminates in a cluster of three green needles

In P. wallichiana, shoot is covered by 10-12 scale leaves cataphyll

In P. wallichiana,

Dwarf shoot is covered by 10-12 scale leaves or

 cataphyll

Primary xylem

Tracheids: have bordered pits on wall Are 2 types:

1. Protoxylem (first tracheids): loose spiral thickenings, few small bordered pits
2. Metaxylem (late formed tracheids): reticulate, large and more numerous pits

Primary phloem

- sieve tubes + phloem parenchyma + albuminous cells
- Sieve tubes: elongated and pointed cells with seive plates on side walls

Primary cambium

- b/w xylem and phloem
- Each bindle with single layer of meristematic cells
- Provides continous increase in girth
- Cambia divides continously in a tangential direction

A closed ring of cambia formed
annual ring =Concentric rings of sec xylem

Winter wood tracheids have thick walls, small bordered pits, squarish tracheids

Summer wood \leftarrow Tracheid's thinner walls, only little lignification, polygonal cells.

Tracheids:
Have bordered Pits
Pits have distinct torus

Torus: In bordered pits, and opposite pits, membrane may be thickened in its central potion. This thickening is called torus
13.5. Radial longitudinal section (R.L.S.) of secondary wood and phloem of Pinus roxburghii showing the structure of secondary medullary ray.

13.5. Radial longitudinal section (R.L.S.) of secondary wood and phloem of Pinus roxburghii showing the structure of secondary medullary ray.

Phloem:
Instead of Tracheidal cells, albuminous cells present

Starch cells present
13.5. Radial longitudinal section (R.L.S.) of secondary wood and phloem of Pinus roxburghii showing the structure of secondary medullary ray.

Sieve cells

Sieve cells are the more primitive of the two main conducting cell types in phloem, and are found in most seedless vascular plants (e.g., ferns, club mosses, horsetails) and gymnosperms (conifers, $\underline{\text { Gingko, etc.). }}$

sieve tubes

The sieve-tube cells, also known as sieve-tube members, are the more advanced type of conducting cell
are the only sieve element found in the phloem of angiosperms.

The sieve tube is an elongated rank of individual cells, arranged end to end, and functioning to conduct food materials throughout the plant.

The sieve areas of these cells are called sieve plates; the pores in sieve plates are generally larger and more variable in size than those in sieve cells

Secondary medullary rays

Replace pri. Medullary rays Formed by cambial cells
2-12 cells high
One cell broad
Shape: thick wall, rectangular parench. cells, have cytoplasm, a nucleus, starch grains have simple pits
Have ray tracheids on upper and lower margin.these are elongated horizontally

Starch Cell

Tracheids interrupted by rays

Uniseriate rays
Ray cells have starch

Bordered pits on radial walls of tracheids

Tracheids
Bordered Pits

Fig. 13.6. Tangential longitudinal section (T.L.S.) of secondary wood showing the medullary rays of P. roxburghii.

Forking of Root
Root hair not well developed
Epiblem replaced by fungal hyphae

Mycorhhizal roots:
short, thick
Lack root hair Lack root cap
More extensively branched covered with fungal hyphae

A: primary tap root with mycorrhiza
B: ectotrophic mycorrhiza
C: T.S of B

Primary Root

Forked, give Y shape to xylem bundles

Endodermis : single layered, brown-orange color, suberized. Pericycle: many layered. Cells with starch and tannin Stele: xylem bundles=triarch or tetrarch (upto 6), exrach phloem bundles=eq no. of phloem bundles

Mycorrhizal root

- Hyphae run between cortical cells
- Fungal cells lie thickly in intercellular spaces
- No fungus in endodermis
- When they are present over surface of root, gives appearance of an outer pseudoparenchymatous tissue.

Secondary growth in roots

Secondary growth in stem and root

Stem	Root	
Annual rings distinct and broad	Annual rings are also distinct but narrow as compared to stem.	
DIFF	Shorter, thin walled tracheids	Tracheids are longer and thick-walled as compared to stem
Cork cambium arise in cortex. Forms periderm/cork to outside. Periderm or cork to outside.	Cork cambium arise in pericycle. Forms periderm/cork to outside. Thick layer of cork separates stele from cortex. Cortex dies and disappear as bark.	
SIMConjoint and collateral arrangement of vascular elements	radial arrangement of vascular elements as in stem	
Bordered pits	Possess bordered pits like those in stem.	

2 Kinds of leaves

Needle / Pine or Pinus needle	Scale leaves
Smooth surface	Rough surface
Born on dwarf branches called spur	Born on long and dwarf shoots (both)
Occur in cluster if $1=$ monofoliar 2	
3	
4	
5	
Base of each needle surrounded by thin, dry, membranous sheath	
Persisten=fall only when spur is shedas a whole (pine tree is evergreen)	Fall off as branches mature
	In axil of scale leaves on long shoots, arise

Smalll size of leaf=xerophytic habitat character = slopes winter

Single layer, Thick wall, heavy cutinized

Fig. 13.9. T.S. needle of P. roxburghii showing detailed internal structure.

End of Anatomy of Pinus

Stem sec crowth

Some cells in cortex
become meristematic
Cork cambium
(single layer)

2 parallel walls formed

Fig. 13.11. T.S. tip of dwarf shoot showing three needles in transection

Single layer, Thick wall, heavy cutinized

Parenchymatous, thin wall, chl, cell wall infolding

Fig. 13.9. T.S. needle of P. roxburghii showing detailed internal structure.

Complex, unusual str.
Anatomy suggests, adapted to endure severe environment condition.
Shape=tri-sector of circle
Epidermis= Single layer, Thick wall, heavy cutinized
Hypodermis=1 or more layer, thick wall (sclerenchymatous). There are air spaces in hypodermis below stomata.
Sunken stomata: guard cells below level of epidermis
Mesophyll: not fiff. Into spongy and palisade parenchyma, thin wall cell with chlorophyll, cell wall infoldings to incr absorptive, aerating, excreting fn of protoplast....thus compensate for reduced leaf surface for photosynthesis.
Resin duct similar in str. To those of stem.
Endodermis=1 layered endodermis, large and oval cells, have casparian strips Pericycle=many layer, parench cells with starch:

1. albuminous cells (rich in protein). Attached with phloem of VB. Pass cmpds from mesophyll to phloem
2.cells resembling tracheids (tracheidal cells)...elongated radially...carry H2O from xylem to mesophyll

1,2 =transfusion tissue. Makes up for poor devt of vascular tissue.
Thus pericycle constitutes transfusion tissue + sclerenchymatous fibres.
Vascular bundles:2 in number

A closed ring of cambia formed
annual ring =Concentric rings of sec xylem

Winter wood tracheids have thick walls, small bordered pits, squarish tracheids

Summer wood \leftarrow Tracheid's thinner walls, only little lignification, polygonal cells.

Tracheids:
Have bordered Pits
Pits have distinct torus

Torus: In bordered pits, and opposite pits, membrane may be thickened in its central potion. This thickening is called torus
13.5. Radial longitudinal section (R.L.S.) of secondary wood and phloem of Pinus roxburghii showing the structure of secondary medullary ray.

13.5. Radial longitudinal section (R.L.S.) of secondary wood and phloem of Pinus roxburghii showing the structure of secondary medullary ray.

Phloem:
Instead of Tracheidal cells, albuminous cells present

Starch cells present
13.5. Radial longitudinal section (R.L.S.) of secondary wood and phloem of Pinus roxburghii showing the structure of secondary medullary ray.

Secondary medullary rays

Replace pri. Medullary rays Formed by cambial cells
2-12 cells high
One cell broad
Shape: thick wall, rectangular parench. cells, have cytoplasm, a nucleus, starch grains have simple pits
Have ray tracheids on upper and lower margin.these are elongated horizontally

Starch Cell

Tracheids interrupted by rays

Uniseriate rays
Ray cells have starch

Bordered pits on radial walls of tracheids

Tracheids
Bordered Pits

Fig. 13.6. Tangential longitudinal section (T.L.S.) of secondary wood showing the medullary rays of P. roxburghii.

Secondary growth in stem and root

Stem	Root	
Annual rings distinct and broad	Annual rings are also distinct but narrow as compared to stem.	
DIFF	Shorter, thin walled tracheids	Tracheids are longer and thick-walled as compared to stem
Cork cambium arise in cortex. Forms periderm/cork to outside. Periderm or cork to outside.	Cork cambium arise in pericycle. Forms periderm/cork to outside. Thick layer of cork separates stele from cortex. Cortex dies and disappear as bark.	
SIMConjoint and collateral arrangement of vascular elements	radial arrangement of vascular elements as in stem	
Bordered pits	Possess bordered pits like those in stem.	

LS Female Cone

Male cones

Pollen Grains: winged

Fig. 13.21. Pinus wallichiana. part of mature microsporangium.

Embrogeny

- Polyembryony

Fig. 13.39. Later stages in development of embryo in Pinus wallichiana. (After Konar)

Seed

Fig. 13.41. (A - B). A. Seed of P. gerardian. B. L.S. of seed.

END

