Pinus

Source

- A textbook of botany (Singh, Pandey, Jain)
- Botany for degree students (P.C Vashishta)

Dr. Sunita Malik Deshbandhu College University of Delhi

PINUS

https://en.wikipedia.org/wiki/Pine

- •Plant is sporophyte
- •70-200 ft generally
- •Pyramid shape
- •Divided into: root, stem, leaves

https://en.wikipedia.org/wiki/Pine

 Branches of unlimited growth

https://en.wikipedia.org/wiki/Pine

2 Kinds of leaves

Needle / Pine or Pinus needle	Scale leaves
Smooth surface	Rough surface
Born on dwarf branches called spur	Born on long and dwarf shoots (both)
Occur in cluster if 1=monofoliar 2 3 4 5	
Base of each needle surrounded by thin, dry, membranous sheath	
Persisten=fall only when spur is shedas a whole (pine tree is evergreen)	Fall off as branches mature
	In axil of scale leaves on long shoots, arise male cones

Smalll size of leaf=xerophytic habitat character = slopes winter

 Branches of unlimited growth / long shoots

Long shoots	Dwarf shoots
Arise in axil of scale leavesa on main trunk	Arise at regular intervals from long branches, in axil of scale leaves
Continue indefinitely by means of apical growth	definite growth (ephemeral)
Covered with brown bud scales	
One whorl develops every year, on regular intervals on main trunk	
Grows horizontally	
Gradually become shorter at apex—pyramid tree	
Each year, gives rise to dwarf shoots in axil of brown scale leaves	Terminates in a cluster of three green needles
Older parts have scars left by fallen dwarf shoots	
	In P. wallichiana, shoot is covered by 10-12 scale leaves cataphyll

In P. wallichiana,

Dwarf shoot is covered by 10-12 scale leaves or

Fig. 13.3, T.S. young stem of Pinus roxburghii.

Vessels (non-porous)-softwood Wood fiber absent

Primary xylem

Tracheids: have bordered pits on wall Are 2 types:

- 1. Protoxylem (first tracheids): loose spiral thickenings, few small bordered pits
- 2. Metaxylem (late formed tracheids): reticulate, large and more numerous pits

Primary phloem

• sieve tubes + phloem parenchyma + albuminous cells

• Sieve tubes: elongated and pointed cells with seive plates on side walls

Primary cambium

- b/w xylem and phloem
- Each bindle with single layer of meristematic cells
- Provides continous increase in girth
- Cambia divides continously in a tangential direction

4. T.S. Portion of old stem of Pinus roxburghii showing details of secondary structure.

13.5. Radial longitudinal section (R.L.S.) of secondary wood and phloem of Pinus roxburghii showing the structure of second-ary medullary ray.

13.5. Radial longitudinal section (R.L.S.) of secondary wood and phloem of Pinus roxburghii showing the structure of secondary medullary ray.

Phloem:

Instead of Tracheidal cells, albuminous cells present

Starch cells present

13.5. Radial longitudinal section (R.L.S.) of secondary wood and phloem of Pinus roxburghii showing the structure of second-ary medullary ray.

Sieve cells	sieve tubes
Sieve cells are the more primitive of the two main conducting cell types in phloem, and are found in most seedless vascular plants (e.g., ferns, club mosses, horsetails) and gymnosperms (conifers, <u>Gingko</u> , etc.).	The sieve-tube cells, also known as sieve-tube members, are the more advanced type of conducting cell
	are the only sieve element found in the phloem of angiosperms.
	The sieve tube is an elongated rank of individual cells, arranged end to end, and functioning to conduct food materials throughout the plant.
Sieve cells have relatively narrow, uniformly- sized pores in the sieve areas. [The sieve areas of these cells are called sieve plates; the pores in sieve plates are generally larger and more variable in size than those in sieve cells

Secondary medullary rays

Replace pri. Medullary rays

Formed by cambial cells

2-12 cells high

One cell broad

Shape: thick wall, rectangular parench. cells, have cytoplasm, a nucleus, starch grains have simple pits

Have **ray tracheids** on upper and lower margin.these are elongated horizontally

Tracheids interrupted by rays

Uniseriate rays Ray cells have starch

Bordered pits on radial walls of tracheids

Tracheids

Fig. 13.6. Tangential longitudinal section (T.L.S.) of secondary wood showing the medullary rays of P. roxburghii.

Forking of Root

Root hair not well developed

Epiblem replaced by fungal hyphae

Mycorhhizal roots:

short, thick Lack root hair Lack root cap More extensively branched covered with fungal hyphae

A: primary tap root with mycorrhiza B: ectotrophic mycorrhiza

C: T.S of B

Primary Root

Stele: xylem bundles=triarch or tetrarch (upto 6), exrach phloem bundles=eq no. of phloem bundles

Mycorrhizal root

- Hyphae run between cortical cells
- Fungal cells lie thickly in intercellular spaces
- No fungus in endodermis
- When they are present over surface of root, gives appearance of an outer pseudoparenchymatous tissue.

Secondary growth in roots

Secondary growth in stem and root

	Stem	Root
	Annual rings distinct and broad	Annual rings are also distinct but narrow as compared to stem.
DIFF	Shorter , thin walled tracheids	Tracheids are longer and thick-walled as compared to stem
	Cork cambium arise in cortex. Forms periderm/cork to outside. Periderm or cork to outside.	Cork cambium arise in pericycle . Forms periderm/cork to outside. Thick layer of cork separates stele from cortex. Cortex dies and disappear as bark.
SIM	Conjoint and collateral arrangement of vascular elements	radial arrangement of vascular elements as in stem
	Bordered pits	Possess bordered pits like those in stem.

2 Kinds of leaves

Needle / Pine or Pinus needle	Scale leaves
Smooth surface	Rough surface
Born on dwarf branches called spur	Born on long and dwarf shoots (both)
Occur in cluster if 1=monofoliar 2 3 4 5	
Base of each needle surrounded by thin, dry, membranous sheath	
Persisten=fall only when spur is shedas a whole (pine tree is evergreen)	Fall off as branches mature
	In axil of scale leaves on long shoots, arise male cones

Smalll size of leaf=xerophytic habitat character = slopes winter

Fig. 13.9. T.S. needle of P. roxburghii showing detailed internal structure.

End of Anatomy of Pinus

Stem sec crowth

Some cells in cortex

become meristematic

Cork cambium

(single layer)

2 parallel walls formed

Fig. 13.11. T.S. tip of dwarf shoot showing three needles in transection

Single layer, Thick wall, heavy cutinized

Parenchymatous, thin wall, chl, cell wall infolding

Fig. 13.9. T.S. needle of P. roxburghii showing detailed internal structure.

Complex, unusual str.

Anatomy suggests, adapted to endure severe environment condition.

Shape=tri-sector of circle

Epidermis= Single layer, Thick wall, heavy cutinized

Hypodermis=1 or more layer, thick wall (sclerenchymatous). There are air spaces in hypodermis below stomata.

Sunken stomata: guard cells below level of epidermis

MesophylI: not fiff. Into spongy and palisade parenchyma, thin wall cell with chlorophyll, cell wall infoldings to incr absorptive, aerating, excreting fn of **protoplast**....thus compensate for reduced leaf surface for photosynthesis. **Resin duct** similar in str. To those of stem.

Endodermis=1 layered endodermis, large and oval cells, have casparian strips Pericycle=many layer, parench cells with starch:

1. albuminous cells (rich in protein). Attached with phloem of VB. Pass cmpds from mesophyll to phloem

2.cells resembling tracheids (tracheidal cells)...elongated radially...carry H2O from xylem to mesophyll

1,2 =transfusion tissue. Makes up for poor devt of vascular tissue. Thus pericycle constitutes transfusion tissue + sclerenchymatous fibres. Vascular bundles:2 in number

Fig. 13.3, T.S. young stem of Pinus roxburghii.

4. T.S. Portion of old stem of Pinus roxburghii showing details of secondary structure.

13.5. Radial longitudinal section (R.L.S.) of secondary wood and phloem of Pinus roxburghii showing the structure of second-ary medullary ray.

13.5. Radial longitudinal section (R.L.S.) of secondary wood and phloem of Pinus roxburghii showing the structure of secondary medullary ray.

Phloem:

Instead of Tracheidal cells, albuminous cells present

Starch cells present

13.5. Radial longitudinal section (R.L.S.) of secondary wood and phloem of Pinus roxburghii showing the structure of second-ary medullary ray.

Secondary medullary rays

Replace pri. Medullary rays

Formed by cambial cells

2-12 cells high

One cell broad

Shape: thick wall, rectangular parench. cells, have cytoplasm, a nucleus, starch grains have simple pits

Have **ray tracheids** on upper and lower margin.these are elongated horizontally

Tracheids interrupted by rays

Uniseriate rays Ray cells have starch

Bordered pits on radial walls of tracheids

Tracheids

Fig. 13.6. Tangential longitudinal section (T.L.S.) of secondary wood showing the medullary rays of P. roxburghii.

Secondary growth in stem and root

	Stem	Root
	Annual rings distinct and broad	Annual rings are also distinct but narrow as compared to stem.
DIFF	Shorter , thin walled tracheids	Tracheids are longer and thick-walled as compared to stem
	Cork cambium arise in cortex. Forms periderm/cork to outside. Periderm or cork to outside.	Cork cambium arise in pericycle . Forms periderm/cork to outside. Thick layer of cork separates stele from cortex. Cortex dies and disappear as bark.
SIM	Conjoint and collateral arrangement of vascular elements	radial arrangement of vascular elements as in stem
	Bordered pits	Possess bordered pits like those in stem.

LS Female Cone

Male cones

Pollen Grains: winged

Embrogeny

Polyembryony

Seed

END