1 Vector Space

1.1 Vector Subspace

Definition 1 Let V be a vector space over the field F and let $W \subseteq V$. Then W will be a subspace of V if W itself is a vector space over F under the same compositions "addition of vectors" and "scalar multiplication" as in V.

Theorem 1 A non-empty subset W of a vector space V over a field F is a subspace of V if and only if

- 1. $\alpha, \beta \in W \Rightarrow \alpha + \beta \in W$.
- 2. $c \in F, \alpha \in W \Rightarrow c\alpha \in W$.

In the above theorem, we need two conditions to prove any subset of a vector space to be a subspace. Both the conditions of above theorem, can be merged in a single condition through which we can also show any subset of a vector space to be a subspace.

Theorem 2 A non-empty subset W of a vector space V over a field F is a subspace of V if and only if

 $c\alpha + d\beta \in W \quad \forall \quad c, d \in F \text{ , and } \alpha, \beta \in W.$

Let us use these theorems for a subset to be a subspace of a vector space.

Example 1 Prove that the subset $W = \{(x, 2x, 3x) | x \in R\}$ of \mathbb{R}^3 is a subspace of \mathbb{R}^3 .

Proof 1 If we take x = 0, we see that $(0,0,0) \in W$, so W is non-empty. Now let $\alpha = (x, 2x, 3x)$ and $\beta = (y, 2y, 3y)$ be any two elements of W for $x \in R, y \in R$. Then

1.

$$\begin{split} \alpha + \beta &= & (x+y, 2x+2y, 3x+3y) \\ &= & ([x+y], 2[x+y], 3[x+y]) \\ &= & (z, 2z, 3z) \in W \quad if \quad z=x+y. \end{split}$$

2.

 $c\alpha = (cx, 2cx, 3cx) \in W$ for any scalar $c \in R$.

Hence by Theorem 1, W is a subspace of \mathbb{R}^3 .

Now let us try to prove W is a subspace of \mathbb{R}^3 using Theorem 2.

Proof 2 Let c, d be any two real numbers(scalars) and let $\alpha = (x, 2x, 3x), \beta = (y, 2y, 3y)$ be any two elements of W for some $x \in R, y \in R$. Then, $c\alpha + d\beta = (cx, 2cx, 3cx) + (dy, 2dy, 3dy) = ([cx + dy], 2[cx + dy], 3[cx + dy]) \in W$ Hence W is a subspace of R^3

Note 1 Sometimes $V_3(R)$ is used for R^3 . Thus, $V_3(R)$ is a set of all triads or 3-tuples over the field R.

Example 2 Prove that the set of all solutions (a,b,c) of the equation a + b + 2c = 0 is a subspace of the vector space $V_3(R)$.

Proof: Let $W = \{(a, b, c) : a, b, c \in R \text{ and } a + b + 2c = 0\}$. We see that (0, 0, 0) satisfies the equation a + b + 2c = 0, so atleast $(0, 0, 0) \in W$ and $W \neq \phi$. Let $\alpha = (a_1, b_1, c_1)$ and $\beta = (a_2, b_2, c_2)$ be any two elements

$$a_1 + b_1 + 2c_1 = 0 \tag{1}$$

and
$$a_2 + b_2 + 2c_2 = 0$$
 (2)

If a, b be any two scalars in R, we have

$$\begin{aligned} a\alpha + b\beta &= a(a_1, b_1, c_1) + b(a_2, b_2, c_2) \\ &= (aa_1, ab_1, ac_1) + (ba_2, bb_2, bc_2) \\ &= (aa_1 + ba_2, ab_1 + bb_2, ac_1 + bc_2). \end{aligned}$$

Now W will be a subspace of $V_3(R)$ if $a\alpha + b\beta \in W$ i.e. $(aa_1 + ba_2, ab_1 + bb_2, ac_1 + bc_2)$ satisfies equation a + b + 2c = 0. For this,

$$(aa_1 + ba_2) + (ab_1 + bb_2) + 2(ac_1 + bc_2) = a(a_1 + b_1 + 2c_1) + b(a_2 + b_2 + 2c_2)$$

= a.0 + b.0 [from(1)and(2)]
= 0

 $\therefore a\alpha + b\beta = (aa_1 + ba_2, ab_1 + bb_2, ac_1 + bc_2) \in W.$ Thus for $\alpha, \beta \in W$ and $a, b \in R \rightarrow a\alpha + b\beta \in W.$ Hence W is a subspace of $V_3(R)$.

Problem 1 The set W of ordered triads $(a_1, a_2, 0)$, where $a_1, a_2 \in F$ is a subspace of $V_3(F)$.

Problem 2 If a_1, a_2, a_3 are fixed elements of a field F, then the set W of all ordered triads (x_1, x_2, x_3) of elements of F such that

$$a_1x_1 + a_2x_2 + a_3x_3 = 0,$$

is a subspace of $V_3(F)$.

Theorem 3 The intersection of any two subspaces W_1 and W_2 of a vector space V(F) is also a subspace of V(F).

Proof: Since $0 \in W_1$ and $0 \in W_2$, therefore $0 \in W_1 \cap W_2 \Rightarrow W_1 \cap W_2 \neq \phi$.

In ordered to prove $W_1 \cap W_2$ a subspace, we need to show that for any $\alpha, \beta \in W_1 \cap W_2$ and $a, b \in F$, $a\alpha + b\beta \in W_1 \cap W_2$.

Let $\alpha, \beta \in W_1 \cap W_2 \Rightarrow \alpha, \beta \in W_1$ and $\alpha, \beta \in W_2$. Since W_1 is a subspace of a vector space V(F) so for any scalars $a, b \in F$, we have $a\alpha + b\beta \in W_1$.

Similarly, W_2 is a subspace of a vector space V(F), then for any scalars $a, b \in F$, we have $a\alpha + b\beta \in W_2$. This implies that $a\alpha + b\beta \in W_1 \cap W_2$. Thus for any $\alpha, \beta \in W_1 \cap W_2$ and $a, b \in F$, $a\alpha + b\beta \in W_1 \cap W_2$. Hence $W_1 \cap W_2$ is a subspace of V(F).

1.2 Linear combination of vectors

Definition 2 Let V(F) be a vector space. If $X_1, X_2, ..., X_n \in V$, then any vector

$$X = c_1 X_1 + c_2 X_2 + \dots + c_n X_n where c_1, c_2, \dots, c_n \in F$$

is called a linear combination of the vectors $X_1, X_2, ..., X_n$. We also say that the vector X is generated by the vectors $X_1, X_2, ..., X_n$.

1.3 Linear dependence and linear independence

Definition 3 Let V be a vector space over the field F and let $X_1, X_2, ..., X_n \in V$. We say that the vectors $X_1, X_2, ..., X_n$ or the set $\{X_1, X_2, ..., X_n\}$ is linearly dependent if there exist scalars $c_1, c_2, ..., c_n$ not all of them 0 (some of them may be zero) such that

$$c_1 X_1 + c_2 X_2 + \dots + c_n X_n = O$$

Definition 4 If the vectors $X_1, X_2, ..., X_n$ are not linearly dependent over F, then they are said to be linearly independent over F.

Example 3 Prove that if two vectors are linearly dependent, one of them is a scalar multiple of the other.

or

Prove that the set $\{X_1, X_2\}$ of two vectors is linearly dependent if X_1 and X_2 are collinear. **Proof:** Let X_1 and X_2 are linearly dependent. Then there exist scalars c_1 and c_2 , (not both zero) such that

$$c_1 X_1 + c_2 X_2 = O$$

If $c_1 \neq 0$, then we can have $X_1 = (-\frac{c_2}{c_1})X_2$, If $c_2 \neq 0$, then we can have $X_2 = (-\frac{c_1}{c_2})X_1$

Thus one of the vector is scalar multiple of the other.

Conversely, let out of the two vectors, one is a scalar multiple of the other. Then $X_1 = cX_2$, for some scalar c. This implies that $1X_1 - cX_2 = O$, which shows that X_1 and X_2 are linearly dependent because both the scalars 1 and c are not zero.

Problem 3 The set $\{e_1, e_2\}$, where $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is a linearly independent set of vectors of \mathbb{R}^2 .

Problem 4 Examine whether the following vectors (1, 2, 3), (0, 1, 2) and (0, 0, 1) are linearly dependent or linearly independent.

Problem 5 Are the vectors $X_1 = (1, 0, 1, 2), X_2 = (0, 1, 1, 2)$ and $X_3 = (1, 1, 1, 3)$ in \mathbb{R}^4 linearly dependent or linearly independent?

Problem 6 Are the vectors $X_1 = (1, 2, -1), X_2 = (1, -2, 1), X_3 = (-3, 2, -1)$ and $X_4 = (2, 0, 0)$ linearly dependent or linearly independent?

Problem 7 The set $\{(1,0,0), (0,1,0), (0,0,1)\}$ of vectors of vector space $V_3(R)$ is linearly independent.

Problem 8 Find the value of x for which the set $\{(1, -2), (x, -4)\}$ is linearly dependent.

Problem 9 Determine whether each of the following subsets of R^3 is linearly independent.

- *i.* $\{(1,2,3), (2,3,1), (3,1,2)\}$
- *ii.* $\{(1,2,3), (2,3,1), (-3,-4,1)\}$
- *iii.* $\{(-2,7,0), (4,17,2), (5,-2,1)\}$
- *iv.* $\{(1,2,3),(2,3,1)\}$

Problem 10 Determine whether each of the following subsets of P(set of all polynomials) is linearly independent.

- *I.* $\{3, x + 1, x^2, x^2 + 2x + 5\}$
- *II.* $\{x^2, x^2 + 1\}$
- *III.* $\{1, x^2, x^3, x^2 + 1\}$
- *IV.* $\{(1, 2, 3), (2, 3, 1)\}$

1.4 Basis

Definition 5 A subset S of a vector space V(F) is called a basis of V(F) if

- 1. S can generate every vector of V(F)
- 2. S is linearly independent.

Example 4 The set $\{(1,0,0), (0,1,0), (0,0,1)\}$ of vectors form a basis of the vector space $V_3(R)$. This is known as the standard basis of R^3 .

Theorem 4 If one basis of a vector space contains n vectors, then all of its basis will contain n vectors.

Theorem 5 If a basis of a vector space contains n vectors, then any set containing more than n vectors is linearly dependent.

Theorem 6 (Existence of a basis) Every non-zero vector space has always a basis.

Note 2 A vector space may have more than one basis. The zero vector space o has no basis.

Problem 11 Determine whether or not the vectors (1, 2, 1), (2, 1, 0), (1, -1, 2) form a basis of \mathbb{R}^3 .

Problem 12 Determine whether or not the vectors (0,1,0), (1,0,1), (1,1,0) form a basis of \mathbb{R}^3 .

1.5 Dimention of a vector space

Definition 6 By the dimension of a vector space V(F), we mean the number of vectors in a basis of V(F). It is denoted by dimV.

Example 5 The set $\{(1,0), (0,1)\}$ of vectors form a basis of the vector space \mathbb{R}^2 . The dimension of \mathbb{R}^2 is 2 *i.e.* $\dim \mathbb{R}^2 = 2$, because the number of vectors in this basis are two.

Example 6 The set $\{(1,0,0), (0,1,0), (0,0,1)\}$ of vectors form a basis of the vector space \mathbb{R}^3 . The dimension of \mathbb{R} is 3 i.e. $\dim \mathbb{R}^3 = 3$, because the number of vectors in this basis are three.

Note 3 The dimension of the zero vector space is zero because the zero vector space o has no basis.