B.A.,Sem-II,Mathematics(Algebra)
 Vector Space continue..

1 Vector Space

1.1 Vector Subspace

Definition 1 Let V be a vector space over the field F and let $W \subseteq V$. Then W will be a subspace of V if W itself is a vector space over F under the same compositions "addition of vectors" and "scalar multiplication" as in V.

Theorem 1 A non-empty subset W of a vector space V over a field F is a subspace of V if and only if

1. $\alpha, \beta \in W \Rightarrow \alpha+\beta \in W$.
2. $c \in F, \alpha \in W \Rightarrow c \alpha \in W$.

In the above theorem, we need two conditions to prove any subset of a vector space to be a subspace. Both the conditions of above theorem, can be merged in a single condition through which we can also show any subset of a vector space to be a subspace.

Theorem 2 A non-empty subset W of a vector space V over a field F is a subspace of V if and only if

$$
c \alpha+d \beta \in W \quad \forall \quad c, d \in F, \text { and } \alpha, \beta \in W
$$

Let us use these theorems for a subset to be a subspace of a vector space.

Example 1 Prove that the subset $W=\{(x, 2 x, 3 x) \mid x \in R\}$ of R^{3} is a subspace of R^{3}.

Proof 1 If we take $x=0$, we see that $(0,0,0) \in W$, so W is non-empty. Now let $\alpha=(x, 2 x, 3 x)$ and $\beta=(y, 2 y, 3 y)$ be any two elements of W for $x \in R, y \in R$. Then
1.

$$
\begin{aligned}
\alpha+\beta & =\quad(x+y, 2 x+2 y, 3 x+3 y) \\
& =\quad([x+y], 2[x+y], 3[x+y]) \\
& =\quad(z, 2 z, 3 z) \in W \quad \text { if } \quad z=x+y .
\end{aligned}
$$

2.

$$
c \alpha=(c x, 2 c x, 3 c x) \in W \quad \text { for any scalar } \quad c \in R
$$

Hence by Theorem 1, W is a subspace of R^{3}.
Now let us try to prove W is a subspace of R^{3} using Theorem 2.

Proof 2 Let c, d be any two real numbers(scalars) and let $\alpha=(x, 2 x, 3 x), \beta=(y, 2 y, 3 y)$ be any two elements of W for some $x \in R, y \in R$. Then,
$c \alpha+d \beta=(c x, 2 c x, 3 c x)+(d y, 2 d y, 3 d y)=([c x+d y], 2[c x+d y], 3[c x+d y]) \in W$
Hence W is a subspace of R^{3}
Note 1 Sometimes $V_{3}(R)$ is used for R^{3}.Thus, $V_{3}(R)$ is a set of all triads or 3 -tuples over the field R.
Example 2 Prove that the set of all solutions (a, b, c) of the equation $a+b+2 c=0$ is a subspace of the vector space $V_{3}(R)$.
Proof: Let $W=\{(a, b, c): a, b, c \in R$ and $a+b+2 c=0\}$. We see that $(0,0,0)$ satisfies the equation $a+b+2 c=0$, so atleast $(0,0,0) \in W$ and $W \neq \phi$. Let $\alpha=\left(a_{1}, b_{1}, c_{1}\right)$ and $\beta=\left(a_{2}, b_{2}, c_{2}\right)$ be any two elements
of W. Then

$$
\begin{array}{ll}
& a_{1}+b_{1}+2 c_{1}=0 \\
\text { and } & a_{2}+b_{2}+2 c_{2}=0 \tag{2}
\end{array}
$$

If a, b be any two scalars in R, we have

$$
\begin{aligned}
a \alpha+b \beta & = \\
& =a\left(a_{1}, b_{1}, c_{1}\right)+b\left(a_{2}, b_{2}, c_{2}\right) \\
& =\left(a a_{1}, a b_{1}, a c_{1}\right)+\left(b a_{2}, b b_{2}, b c_{2}\right) \\
& \left(a a_{1}+b a_{2}, a b_{1}+b b_{2}, a c_{1}+b c_{2}\right) .
\end{aligned}
$$

Now W will be a subspace of $V_{3}(R) \quad$ if $\quad a \alpha+b \beta \in W$ i.e. $\left(a a_{1}+b a_{2}, a b_{1}+b b_{2}, a c_{1}+b c_{2}\right)$ satisfies equation $a+b+2 c=0$.
For this,

$$
\begin{array}{rlcc}
\left(a a_{1}+b a_{2}\right)+\left(a b_{1}+b b_{2}\right)+2\left(a c_{1}+b c_{2}\right) & = & a\left(a_{1}+b_{1}+2 c_{1}\right)+b\left(a_{2}+b_{2}+2 c_{2}\right) \\
& = & a .0+b .0 & {[\text { from }(1) \operatorname{and}(2)]} \\
& = & 0
\end{array}
$$

$\therefore a \alpha+b \beta=\left(a a_{1}+b a_{2}, a b_{1}+b b_{2}, a c_{1}+b c_{2}\right) \in W$.
Thus for $\alpha, \beta \in W$ and $a, b \in R \rightarrow a \alpha+b \beta \in W$.
Hence W is a subspace of $V_{3}(R)$.
Problem 1 The set W of ordered triads $\left(a_{1}, a_{2}, 0\right)$, where $a_{1}, a_{2} \in F$ is a subspace of $V_{3}(F)$.
Problem 2 If a_{1}, a_{2}, a_{3} are fixed elements of a field F, then the set W of all ordered triads $\left(x_{1}, x_{2}, x_{3}\right)$ of elements of F such that

$$
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0,
$$

is a subspace of $V_{3}(F)$.
Theorem 3 The intersection of any two subspaces W_{1} and W_{2} of a vector space $V(F)$ is also a subspace of $V(F)$.
Proof: Since $0 \in W_{1}$ and $0 \in W_{2}$, therefore $0 \in W_{1} \cap W_{2} \Rightarrow W_{1} \cap W_{2} \neq \phi$.
In ordered to prove $W_{1} \cap W_{2}$ a subspace, we need to show that for any $\alpha, \beta \in W_{1} \cap W_{2}$ and $a, b \in F, \quad a \alpha+b \beta \in$ $W_{1} \cap W_{2}$.
Let $\alpha, \beta \in W_{1} \cap W_{2} \Rightarrow \alpha, \beta \in W_{1}$ and $\alpha, \beta \in W_{2}$. Since W_{1} is a subspace of a vector space $V(F)$ so for any scalars $a, b \in F$, we have $a \alpha+b \beta \in W_{1}$.
Similarly, W_{2} is a subspace of a vector space $V(F)$, then for any scalars $a, b \in F$, we have $a \alpha+b \beta \in W_{2}$. This implies that $a \alpha+b \beta \in W_{1} \cap W_{2}$. Thus for any $\alpha, \beta \in W_{1} \cap W_{2}$ and $a, b \in F, \quad a \alpha+b \beta \in W_{1} \cap W_{2}$.
Hence $W_{1} \cap W_{2}$ is a subspace of $V(F)$.

1.2 Linear combination of vectors

Definition 2 Let $V(F)$ be a vector space. If $X_{1}, X_{2}, \ldots X_{n} \in V$, then any vector

$$
X=c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{n} X_{n} \text { wherec }_{1}, c_{2}, \ldots, c_{n} \in F
$$

is called a linear combination of the vectors $X_{1}, X_{2}, \ldots X_{n}$. We also say that the vector X is generated by the vectors $X_{1}, X_{2}, \ldots X_{n}$.

1.3 Linear dependence and linear independence

Definition 3 Let V be a vector space over the field F and let $X_{1}, X_{2}, \ldots X_{n} \in V$. We say that the vectors $X_{1}, X_{2}, \ldots X_{n}$ or the set $\left\{X_{1}, X_{2}, \ldots X_{n}\right\}$ is linearly dependent if there exist scalars $c_{1}, c_{2}, \ldots, c_{n}$ not all of them 0 (some of them may be zero)such that

$$
c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{n} X_{n}=O
$$

Definition 4 If the vectors $X_{1}, X_{2}, \ldots X_{n}$ are not linearly dependent over F, then they are said to be linearly independent over F.

Example 3 Prove that if two vectors are linearly dependent, one of them is a scalar multiple of the other.

or

Prove that the set $\left\{X_{1}, X_{2}\right\}$ of two vectors is linearly dependent if X_{1} and X_{2} are collinear.
Proof: Let X_{1} and X_{2} are linearly dependent. Then there exist scalars c_{1} and c_{2}, (not both zero) such that

$$
c_{1} X_{1}+c_{2} X_{2}=O
$$

If $c_{1} \neq 0$, then we can have $X_{1}=\left(-\frac{c_{2}}{c_{1}}\right) X_{2}$,
If $c_{2} \neq 0$, then we can have $X_{2}=\left(-\frac{c_{1}}{c_{2}}\right) X_{1}$
Thus one of the vector is scalar multiple of the other.
Conversely, let out of the two vectors, one is a scalar multiple of the other. Then $X_{1}=c X_{2}$, for some scalar c. This implies that $1 X_{1}-c X_{2}=O$, which shows that X_{1} and X_{2} are linearly dependent because both the scalars 1 and c are not zero.
Problem 3 The set $\left\{e_{1}, e_{2}\right\}$, where $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $e_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is a linearly independent set of vectors of R^{2}.
Problem 4 Examine whether the following vectors $(1,2,3),(0,1,2)$ and $(0,0,1)$ are linearly dependent or linearly independent.

Problem 5 Are the vectors $X_{1}=(1,0,1,2), X_{2}=(0,1,1,2)$ and $X_{3}=(1,1,1,3)$ in R^{4} linearly dependent or linearly independent?

Problem 6 Are the vectors $X_{1}=(1,2,-1), X_{2}=(1,-2,1), X_{3}=(-3,2,-1)$ and $X_{4}=(2,0,0)$ linearly dependent or linearly independent?

Problem 7 The set $\{(1,0,0),(0,1,0),(0,0,1)\}$ of vectors of vector space $V_{3}(R)$ is linearly independent.
Problem 8 Find the value of x for which the set $\{(1,-2),(x,-4)\}$ is linearly dependent.
Problem 9 Determine whether each of the following subsets of R^{3} is linearly independent.
i. $\{(1,2,3),(2,3,1),(3,1,2)\}$
ii. $\{(1,2,3),(2,3,1),(-3,-4,1)\}$
iii. $\{(-2,7,0),(4,17,2),(5,-2,1)\}$
iv. $\{(1,2,3),(2,3,1)\}$

Problem 10 Determine whether each of the following subsets of P (set of all polynomials) is linearly independent.
I. $\left\{3, x+1, x^{2}, x^{2}+2 x+5\right\}$
II. $\left\{x^{2}, x^{2}+1\right\}$
III. $\left\{1, x^{2}, x^{3}, x^{2}+1\right\}$
IV. $\{(1,2,3),(2,3,1)\}$

1.4 Basis

Definition 5 A subset S of a vector space $V(F)$ is called a basis of $V(F)$ if

1. S can generate every vector of $V(F)$
2. S is linearly independent.

Example 4 The set $\{(1,0,0),(0,1,0),(0,0,1)\}$ of vectors form a basis of the vector space $V_{3}(R)$. This is known as the standard basis of R^{3}.
Theorem 4 If one basis of a vector space contains n vectors, then all of its basis will contain n vectors.
Theorem 5 If a basis of a vector space contains n vectors, then any set containing more than vectors is linearly dependent.

Theorem 6 (Existence of a basis) Every non-zero vector space has always a basis.
Note 2 A vector space may have more than one basis. The zero vector space o has no basis.
Problem 11 Determine whether or not the vectors $(1,2,1),(2,1,0),(1,-1,2)$ form a basis of R^{3}.
Problem 12 Determine whether or not the vectors $(0,1,0),(1,0,1),(1,1,0)$ form a basis of R^{3}.

1.5 Dimention of a vector space

Definition 6 By the dimention of a vector space $V(F)$, we mean the number of vectors in a basis of $V(F)$. It is denoted by dimV.

Example 5 The set $\{(1,0),(0,1)\}$ of vectors form a basis of the vector space R^{2}. The dimention of R^{2} is 2 i.e. $\operatorname{dim} R^{2}=2$, because the number of vectors in this basis are two.

Example 6 The set $\{(1,0,0),(0,1,0),(0,0,1)\}$ of vectors form a basis of the vector space R^{3}. The dimention of R is 3 i.e. $\operatorname{dim} R^{3}=3$, because the number of vectors in this basis are three.

Note 3 The dimension of the zero vector space is zero because the zero vector space o has no basis.

