Bivariale Normal Dishibution :

- · It is the generalisation of one variable Normal Instrumention

Definition: A pair of random variables X and Y have a bivariate normal distribution and they are refleved as Jointz Distributed Normal variables iff their Joint Probability Densily Function is given by

$$f(x,y) = \frac{e^{-\frac{1}{2(1-\rho)^2} \left[ \left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right) \left(\frac{y-\mu_2}{\sigma_2}\right) + \left(\frac{y-\mu_2}{\sigma_2}\right)^2 \right]}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

for 
$$-\infty < 2 < \infty$$
 and  $-\infty < y < \infty$ , where  $\sigma_1 > 0$ ,  $\sigma_2 > 0$ , and  $-1 . $\sigma_1^2 = Varaince of X, \sigma_2^2 = Variance of Y, S = Corellation Coefficients$$ 

Following Question Could be Asked  
1. Marginal Drensity Function 
$$\rightarrow f_X^{(\alpha)}$$
 and  $f_Y^{(\beta)}$   
2. Mean  $M_1$ ,  $M_2$   
3. Variance  $\sigma_1^2$  and  $\sigma_2^2$ .  
4. Co-variance (Cov(xx)) & Co-Relation Cofficient( $r$ ) =  $\frac{Cov(XY)}{\sigma_1\sigma_2}$ .  
5. THEOREM: If X and Y have a bivariate normal distribution, the condition  
of, probability density function (Pd+) [fyk] of Y given X=2 is a Normal  
obistribution with mean (Conditional Mean)  
 $M_{Y|X} = M_2 + P \frac{\sigma_2}{\sigma_1} (X-M_1)$   
 $f Variance  $\sigma_{Y|X}^2 = \sigma_2^2 (1-P^2) \Rightarrow Conditional Variance.$$ 

G. THEOREM: If two Rondom variables have bivariate normal distributes.  
Hey are independent iff 
$$P=D$$

## HINTS : .

1. Marginal Density Functions  $f_{x}(z) = \int_{-\infty}^{\infty} f(x,y) dy$ Bivariate Normal dustribution =  $\frac{1}{\sigma_{1}\sqrt{2\pi}} e^{\left(\frac{(x-\mu_{1})^{2}}{\sigma_{1}}\right)^{2}}$   $f_{y}(y) = \int_{-\infty}^{\infty} f(x,y) dx = \frac{1}{\sigma_{2}\sqrt{2\pi}} e^{\left(\frac{(x-\mu_{1})^{2}}{\sigma_{2}}\right)^{2}}$ 

2. 
$$E(x) = \int_{-\infty}^{\infty} f_x(x) dx = M_1$$
,  $E(Y) = \int_{0}^{\infty} f_y(y) dy = M_2$ . (Easy to show)

3. 
$$\sigma_1^2 = E(x^2) - M_1^2$$
 )  $\sigma_2^2 = E(y^2) - M_2^2$  | Variances.

4.  $COV(X,Y) = E(XY) - M_1 \cdot M_2$ ,  $f = \frac{COV(X,Y)}{\sigma_1 \sigma_2}$  (Co-Relation Coefficient)



**Theorem 2.5.1.** Let the random variables  $X_1$  and  $X_2$  have supports  $S_1$  and  $S_2$ , respectively, and have the joint pdf  $f(x_1, x_2)$ . Then  $X_1$  and  $X_2$  are independent if and only if  $f(x_1, x_2)$  can be written as a product of a nonnegative function of  $x_1$  and a nonnegative function of  $x_2$ . That is,

 $f(x_1, x_2) \equiv g(x_1)h(x_2),$ 

where  $g(x_1) > 0$ ,  $x_1 \in S_1$ , zero elsewhere, and  $h(x_2) > 0$ ,  $x_2 \in S_2$ , zero elsewhere.

Then

$$f(x,y) = \frac{e^{-\frac{1}{2(1-\rho)^2} \left[ \left( \frac{x-\mu_1}{\sigma_1} \right)^2 - 2\rho \left( \frac{x-\mu_1}{\sigma_1} \right) \left( \frac{y-\mu_2}{\sigma_2} \right) + \left( \frac{y-\mu_2}{\sigma_2} \right)^2 \right]}{2\pi \sigma_1 \sigma_2 \sqrt{1-\rho^2}}$$

$$(Suppose \times 5 \gamma \text{ are independent})$$

$$= f_{\chi}(x) \cdot f_{\chi}(y) \quad | \text{marginal pdf of}$$

$$= f_{\chi}(x) \cdot f_{\chi}(y) \quad | \text{marginal pdf of}$$

$$= \frac{i}{\sigma_1 \sqrt{2\pi}} e^{-\frac{i}{2} \left( \frac{x-\mu_1}{\sigma_1} \right)^2} \cdot \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-\frac{1}{2} \left( \frac{y-\mu_2}{\sigma_2} \right)^2}$$

$$\iff f = \overline{O} \qquad \text{Check This (Eosy)}$$

Q1. To prove Theorem at 5 S.N, show that if X and Y have a bivariate normal distribution, then (a) their independence implies that  $\rho = 0$ ;

(b)  $\rho = 0$  implies that they are 49.

Q2. If X and Y have a bivariate normal distribution, it can be shown that their joint momentgenerating function is given by

$$\begin{split} M_{X,Y}(t_1,t_2) &= E(e^{t_1 X + t_2 Y}) \\ &= e^{t_1 \mu_1 + t_2 \mu_2 + \frac{1}{2}(\sigma_1^2 t_1^2 + 2\rho \sigma_1 \sigma_2 t_1 t_2 + \sigma_2^2 t_2^2)} \end{split}$$

Verify that

(a) the first partial derivative of this function with respect to

(b) the second partial derivative with respect to  $t_1$  at  $t_1=0$  and  $t_2=0$  is  $\sigma_1^2 + M_1^2$ .

(c) the second partial derivative with respect to  $t_1$  and  $t_2$  at  $t_1=0$  and  $t_2=0$  is  $f_{\sigma_1,\sigma_2}+\mu_1,\mu_2$ .

03/05/200 Dr. Pankaj Mishra

Department of Mathematics Deshbandhu College pmishra@db.du.ac.in, pmmishra2019@gmail.com